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Abstract

An e-graph is a data structure that efficiently represents sets of congruent terms (Nelson,

1980). It has a long history of applications in automated theorem proving (Nelson, 1980;

de Moura and Bjørner, 2007; Selsam and Moura, 2016; Nieuwenhuis and Oliveras, 2005;

Detlefs et al., 2005) and is re-purposed in the last decade for program optimization, known

as equality saturation (Tate et al., 2009; Joshi et al., 2006; Wang et al., 2020; Premtoon

et al., 2020; Panchekha et al., 2015; Willsey et al., 2021). A fundamental query operation

on e-graph is e-matching (de Moura and Bjørner, 2007; Detlefs et al., 2005), which finds the

set of terms in the e-graph matching a given pattern. E-matching is the bottleneck of many

equality saturation–based program optimizers (Wang et al., 2020; Panchekha et al., 2015;

Willsey et al., 2021) and is a central procedure in state-of-the-art SMT solvers, including Z3

(de Moura and Bjørner, 2008) and CVC4 (Barrett et al., 2011). Therefore, the performance

of e-matching is critical. Several optimizations are proposed for e-matching (de Moura and

Bjørner, 2007; Detlefs et al., 2005). However, to our knowledge, existing e-matching algo-

rithms are based on näıve backtracking, which is suboptimal in many cases. In particular,

they do not exploit the equality constraints implied by multi-occurrences of a variable, which

is nonetheless common in practice.

To tackle this inefficiency, we propose to take a relational view of e-graphs. Under this

view, e-matching corresponds naturally to a restricted class of relational queries, known as

conjunctive query. By treating e-matching as an instance of conjunctive query, we benefit

from decades of researches from the database community. In particular, by using the recently

discovered generic join algorithm, our e-matching algorithm guarantees worst-case optimality

and achieves more than 400× speed-up in our preliminary experiments.

This thesis is based on an extended abstract to appear at PLDI 2021 Student Research

Competition and a forthcoming paper.
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Chapter 1

INTRODUCTION

The e-graph data structure has been the focus of programming language and verification

research for a long time. First invented in the 1980s, it is originally designed for automated

theorem proving (ATP) and is extensively used in modern theorem provers (Nelson, 1980;

de Moura and Bjørner, 2007; Nieuwenhuis and Oliveras, 2005; Detlefs et al., 2005; de Moura

and Bjørner, 2008; Barrett et al., 2011). During the last decade, e-graphs are also re-purposed

for program optimization, known as equality saturation (Tate et al., 2009; Joshi et al., 2006;

Wang et al., 2020; Premtoon et al., 2020; Panchekha et al., 2015; Willsey et al., 2021). At

its core, e-graphs generalize the union-find data structure (Tarjan, 1975), which efficiently

represents equivalence relations, to congruence relations. A congruence relation ∼= is an

equivalence relation where two terms are also congruent (i.e., f(t1, . . . , tk) ∼= f(t′1, . . . , t
′
k)) if

all children of the two terms are pairwise congruent (i.e., ti ∼= t′i). E-graphs maintains the

congruence invariant by maintaining a set of equivalent classes (known as e-classes) consisting

of a set of nodes (known as e-nodes), while every e-node consists of a head function symbol

and a list of children e-classes.

E-matching is a fundamental operation on e-graphs (de Moura and Bjørner, 2007; Detlefs

et al., 2005). It finds the set of terms in an e-graph matching a given pattern. For exam-

ple, for pattern f(α, g(α))1, e-matching finds every term whose head symbol is f and whose

second argument has a head symbol g and whose first argument to f and first argument

to g are the same. E-matching is a central procedure in state-of-the-art SMT solvers, in-

cluding Z3 (de Moura and Bjørner, 2008) and CVC4 (Barrett et al., 2011). SMT solvers

1α is a variable in this pattern. We use a, b, c for constants and α, β, γ for variables as a convention.
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use e-matching to instantiate quantified formulas over ground terms. Moreover, e-matching

is also the bottleneck of many equality saturation–based program optimizers (Wang et al.,

2020; Panchekha et al., 2015; Willsey et al., 2021). In equality saturation, the optimizer uses

e-matching to match the left-hand side of the rewrite rules and fires new terms based on the

matches, and e-matching usually takes 60–90% of the overall run time. Therefore, in both

applications, the performance of e-matching is critical.

Several algorithms are proposed for e-matching (de Moura and Bjørner, 2007; Detlefs

et al., 2005). However, to our knowledge, existing e-matching algorithms are based on

näıve backtracking, which is suboptimal in many cases. In particular, their query planning

does not exploit the constraints implied by multi-occurrences of the same variable, which

is nonetheless a common pattern in practice. To see this, consider the pattern f(α, g(α))

again. This pattern generates three constraints for a potential matching e-node n:

n.symbol = f (1.1)

n.child2.symbol = g (1.2)

n.child1 = n.child2.child1 (1.3)

There are two kinds of constraints here. The first kind of constraint is derived from the

structure of the pattern. In this example, the structure of f(α, g(α)) constrains the head

symbol of all (sub)terms to be f and g respectively (i.e., constraint 1.1 and 1.2), which we

call structural constraints. The second kind of constraints is implied by the multi-occurrence

of the same variable. Here, the occurrence of α implies that the terms at these positions

should be equivalent with each other for all matches (i.e., constraint 1.1), which we call

equality constraints.

To our knowledge, existing backtracking-based algorithms only exploit the structural con-

straint during query planning and fail to consider equality constraints in general. Therefore,

running backtracking-based algorithms on the above pattern, terms violating constraint 1.3

are only pruned away a posteriori when the partial match containing violating variables are

instantiated (See Chapter 2 for more details). Therefore, excessive terms like f(a, g(b)) for
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a 6∼= b will be enumerated during search and only pruned away before yielding.

We solve this issue by taking a relational view of e-graphs and e-matching, which we

call relational e-matching. Under this view, e-graphs correspond to a relational database

and e-matching patterns correspond to a restricted class of relational queries, known as

conjunctive queries. One key advantage of this relational view is that the conjunctive query

representation provides a unified way to explicitly encode both structural constraints and

equality constraints, of which the conjunctive query solver could take advantage during

query planning.

One particular kind of conjunctive queries practical e-matching patterns may correspond

to is cyclic queries, where query plans based on traditional two-way joins, including hash

joins and merge-sort joins, are known to be suboptimal (Atserias et al., 2008). On cyclic

queries, two-way joins cannot leverage all the constraints to prune the search space at once,

so candidates that does not satisfy all the constraints will be enumerated. Therefore, we

take inspirations from the theoretical advances in database theory community and utilize

generic join algorithm as the conjunctive query solver. Generic join algorithm is a worst-case

optimal algorithm on conjunctive queries, and it avoids to enumerate candidates that do not

satisfy all the constraints. Moreover, it is particularly efficient with complex queries (e.g.,

cyclic queries). Using generic joins, our e-matching algorithm preserves the guarantees of

worst-case optimality. Finally, we instantiate our algorithm in egg (Willsey et al., 2021), a

program optimization framework based on equality saturation. We evaluate our implementa-

tion using some microbenchmarks, which shows asymptotic speedup and order of magnitude

performance gain.

In summary, we made the following contributions:

• We propose relational e-matching, a worst-case optimal and efficient approach to

e-matching by running generic joins on e-matching-translated conjunctive queries over

the relational representations of e-graphs.

• We instantiate relational e-matching in an efficient implementation integrates to egg
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and evaluate it on several benchmarks.
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Chapter 2

BACKGROUNDS

In this chapter, we briefly review related backgrounds.

2.1 E-graphs and e-matching

Terms. Let Σ be a set of function symbols with associated arities. A function symbol is

called a constant if it has a zero arity. Let V be the set of variables. We define T (Σ, V ) to

be the set of terms constructed using function symbols from Σ and variables from V . More

formally, T (Σ, V ) is the smallest set that (1) all variables and constants are in T (Σ, V ) and

(2) t1, . . . , tk ∈ T (Σ, V ) implies f(t1, . . . , tk) ∈ T (Σ, V ), where f ∈ Σ has arity k. A ground

term is a term in T (Σ, V ) that contains no variables. A non-ground term is also called a

pattern. We call a term of the form f(t1, . . . , tk) an f -application term.

Congruence relation. An equivalence relation ≡Σ is a binary relation over T (Σ, ∅) that

is reflexive, symmetric, and transitive. A congruence relation ∼=Σ is an equivalence relation

satisfying that if ti ∼= t′i for all i = 1, . . . , n hold, f(t1, . . . , tn) ∼= f(t′1, . . . , t
′
n) holds as well,

where f is a n-ary function symbol. We wrote ∼= when Σ is clear from the context.

E-graph. Intuitively, an e-graph E is a set of e-classes {c1, . . . , ck}, where each e-class c is a

set of e-nodes {n1, . . . , nk}. Each e-node consists of a function symbol f and a list of children

e-classes. Similar to patterns, we call an e-node of the form f(c1, . . . cn) an f -application

e-node. More formally, we define an e-graph E to be an tuple (Σ, N, C, symbol, lookup, child)

where

• Σ is a set of function symbols with associated arities,
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• N is the set of e-nodes,

• C is the set of e-classes,

• symbol is a function that maps each e-node in N to a function symbol in Σ,

• lookup is a function that maps every e-node in N to the e-class in C that contains it,

and

• child is a function that maps an e-node to a list of e-class that are the children of this

e-node.

For convenience, we use n.symbol, n.id, and n.childi to denote symbol (n), lookup (n), and the

ith element of child(n).

An e-graph E efficiently represents sets of ground terms in a congruence relation. An

e-graph is said to represent a ground term t if its e-classes represent it. An e-class c rep-

resents a ground term if c contains an e-node a that represents it. An e-node f(c1, . . . , ck)

represents a ground term f(t1, . . . , tk) if they have the same function symbol f and each

e-class ci represents term ti. Terms represented by an e-class are equivalent to each other.

Consequently, an e-graph forms a congruence relation. Consider Figure 2.1a for example.

g(f(c, c)), f(c, g(b)), and f(a, g(a)) are three ground terms represented by e-class c1 in this

e-graph. Therefore, they are congruent with each other by definition.

E-matching. E-matching is the task of finding e-matching substitutions that instantiate

patterns to set of terms represented in the e-graph. An e-matching substitution σ is a function

that maps every variable in a pattern to e-classes. For convenience, we use σ(p) to denote the

set of terms obtained by replacing every occurrence of variable vi in p with terms in σ(vi).

Formally, given an e-graph E and a pattern p, e-matching finds the set of all possible pairs

(σ, r) such that every term in σ(p) is represented in the e-class r. Terms in σ(p) are said to

be matched by pattern p. r is said to be the root of matched terms. For instance, pattern
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(a)

eclass-id child1 child2

1 4 3

2 4 4

(b)

eclass-id child1

1 2

3 4

3 5

(c)

Figure 2.1: (a) an e-graph over T (Σ, ∅) and ∼=Σ where Σ = {f, g, a, b, c} and a, b, c are

nullary functions. Each solid box denotes an e-node and each dashed box denotes an e-

class. Every term represented by an e-class is mutually equivalent. For example, a ∼=Σ c,

g(a) ∼=Σ g(b), and f(a, g(a)) ∼=Σ g(f(a, a)). The labels of e-classes are at bottom left. (b)

relation representing f . (c) relation representing g.

f(α, g(α)) matches four terms in e-class c1: f(a, g(a)), f(a, g(c)), f(c, g(c)), and f(c, g(a));

all of which are witnessed by the substitution {α 7→ c4}.

Existing approaches to e-matching rely on backtracking (de Moura and Bjørner, 2007;

Detlefs et al., 2005; Willsey et al., 2021). For example, de Moura and Bjørner (2007) proposed

a backtracking-based e-matching algorithm that is used by Z3 (de Moura and Bjørner, 2008)

and egg (Willsey et al., 2021), two state-of-the-art e-graph implementations. To match

the pattern f(α, g(α)) on the e-graph in Figure 2.1a, their algorithm does a depth-first

search over the e-graph: it searches for all f -application e-nodes nf , adds α 7→ nf .child1 to

substitution σ, iterates through all g-application e-nodes ng in e-class nf .child2, and only

yield σ if ng.child1 = σ(α). In general, this procedure runs in time that is quadratic of the



8

e-graph size. In a large e-graph, there may be thousands of pairs of nf and ng where ng is

in e-class nf .child2, but only a few satisfy the constraint nf .child1 = ng.child1. Therefore,

backtracking-based e-matching enumerates an unnecessarily large pool of candidates. Even

worse, complex query patterns may involve many variables that occur at several places,

which makes näıve backtracking enumerates an excessive number of terms and therefore

extremely slow. This inefficiency is due to the fact that näıve backtracking does not use the

equality constraints to prune the search space globally. This is in contrast to our approach,

which exploits the equality constraints during query planning for greater performance and

guarantees worst-case optimality with respect to the output size.

2.2 Conjunctive queries

Relational schema. A relational schema SD over domain D is a set of relation symbols

with associated arities. An atom under a schema SD is an expression R(t1, . . . , tk), where k

is the arity of R in SD and ti is an element in D. An instance of SD is a set of atoms over

SD.

Conjunctive queries. A conjunctive query over schema SD and a set of variables V is a

formula of the form

ans(x1, . . . xk) :- R1(v1,1, . . . , v1,k1), . . . , Rn(vn,1, . . . , vn,kn),

where n ≥ 0, R1 . . . Rn are relation names in SD with arities k1, . . . kn, ans is the name of

the resulting relation not in SD, vi,j are variables in V 1, and x1, . . . xk are variables occurring

in vi,j. We call such Ri(vi,1, . . . , vi,k1) an atom of the conjunctive query.

Semantics of conjunctive queries. Similar to e-matching substitutions, we define a

conjunctive query substitution as a function that maps every variable occurring in vi,j to ele-

ments in D. The semantics of conjunctive queries is defined as follows: Let q be a conjunctive

1Some definitions of conjunctive queries allow both variables and constants, but we only allow variables
in conjunctive queries for simplicity.
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query, I be an instance of SD, conjunctive queries yield the set of all ans(σ(x1), . . . , σ(xk))

where σ is a substitution satisfying that Ri(σ(t1), . . . σ(tk)) are atoms in I for i = 1, . . . , n.

We denote the result set as q(I).

We make the observation that the definition of conjunctive query and e-matching are

definitionally similar to each other: both are defined as finding substitutions whose instan-

tiations are present in a (relational or graph) database. In fact, the e-matching problem

can be viewed as a “nested” conjunctive queries on a database where the atoms are nested.

Therefore, it is tempting to reduce the e-matching problem to a conjunctive query over

the relational database, thereby benefiting from well-studied techniques from the database

community, including join algorithms, query optimization, and query evaluations.

2.3 The AGM bound and Generic Join 2

The AGM Bound Given a database and a conjunctive query, the AGM bound Atserias

et al. (2008) is a bound on how large the query output could be. A simple bound just

multiplies the cardinally of each relation, which is the size of the Cartesian product of all

relations. For example, for triangle query Q(x, y, z) :- R(x, y), S(y, z), T (x, z), this bound

computes to |Q| ≤ |R|×|S|×|T |. If |R| = |S| = |T | = N , then |Q| ≤ N3. However, we can do

better: we observe that Q contains fewer atoms than the query Q′(x, y, z) :- R(x, y), S(y, z),

as Q is further filtered by joining with T . Therefore, we know |Q| ≤ |R| × |S| = N2. In fact,

the theoretical bound of conjunctive query output size is given as the AGM bound (Atserias

et al., 2008), which is N3/2 in this case.

The AGM bound proposes a question: is there an algorithm that always achieves the

performance described by the AGM bound? In particular, cyclic queries is a kind of con-

junctive queries whose query hypergraph contains cycles, such as the triangle query Q above,

and they are known to make traditional join plans (e.g., join plans using two-way joins like

hash joins or merge joins) suboptimal. Most of real-world database systems therefore have

2This section is inspired by Remy Wang’s introduction to generic join algorithms.

https://gitlab.com/remywang/blog/-/blob/master/posts/wcoj.md
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1: procedure SolveTriangleQuery(R, S, T )

2: A := R(x, y).x ∩ T (z, x).x

3: . Compute Q(α, y, z) :- R(α, y), S(y, z), T (z, α)

4: for α ∈ A do

5: B := R(α, y).y ∩ S(y, z).y

6: . Compute Q(α, β, z) :- R(α, β), S(β, z), T (z, α)

7: for β ∈ B do

8: C := S(β, z).z ∩ T (z, α).z

9: . Yield join results Q(α, β, γ)

10: for γ ∈ C do

11: output Q(α, β, γ)

12: end for

13: end for

14: end for

15: end procedure

Figure 2.2: Generic join algorithm for the triangle query Q(x, y, z) :- R(x, y), S(y, z), T (z, x),

with ordering [x, y, z].
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bad performance on cyclic queries.

Generic join. Fortunately, theoretical progress has been made in the database theory

community to achieve optimal performance on conjunctive queries and on cyclic queries in

particualr. In particular, the generic join algorithm for conjunctive query is developed that

runs in time linear to the worst-case output size with a log factor (Ngo et al., 2018). The

generic join algorithm has great performance in practice when the query is cyclic, and is

competitive to traditional join algorithms in other cases. Given a conjunctive query and a

relational database, generic join is parameterized over a ordering of the set of variables in

the query, say [x, y, z] for the query above. The ordering does not matter for the optimality

guarantee, but may impact practical performance greatly. Given an ordering, we assume

the input relations are stored in tries sorted by the ordering. That is, given the ordering

[x, y, z], R(x, y) is sorted by x and then y, and the first-level trie nodes are the x’s. We can

very efficiently intersect (join) relations on their first (according to the variable ordering)

variable given such tries. Algorithm 2.2 shows the generic join algorithm for computing Q.

Note that selection, e.g. R(a, y) is very fast with the built tries. A ∩ B can also be done

in Õ(min(|A|, |B|)) time (Õ means O with a log factor). For general queries we may have

to intersect more than two relations, in which case the intersection should be performed in

Õ(mini |Ai|) time (using the merge in merge-sort).
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Chapter 3

RELATIONAL E-MATCHING

In this chapter, we introduce our relational e-matching algorithm, shown in Figure 3.1.

The algorithm takes an e-graph E and a set of patterns ps. It first transforms the e-graph to

its relational representation, denoted as I. Next, for each pattern, it compiles the pattern to

a conjunctive query q, and executes this conjunctive query over I. This is particularly suited

for scenarios like equality saturation. In such scenarios, the program optimizer switches

between e-matching and batched rewrite applications in each iteration to amortize the run-

time required for maintaining the congruence invariant, a technique known as “rebuilding”

(Willsey et al., 2021). In such scenarios, the run time for materializing the e-graph can be

neglected compared to the e-matching workload. In other scenarios, where the e-graph is

frequently updated and e-matching is performed interactively, it is possible to use a totally re-

lational representation to avoid the cost of frequent materialization of the relational database

and use standard update operations from a SQL-like language1. However, we suspect this

would incur a larger constant factor to the run time compared to the graph representation

1We actually implemented a prototype e-graph purely on top of an in-memory relational database that
does not use graph data structure nor union-finds.

1: procedure RelationalEMatching(E, ps)

2: I← EgraphToDatabase(E)

3: return {EvalCQ(q, I) | for p ∈ ps, q ← PatternToCQs(p)}

4: end procedure

Figure 3.1: The relational e-matching algorithm
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EgraphToDatabase(E) = {EnodeToAtom(n) | for e-node n ∈ E}

EnodeToAtom(f(c1, . . . , cn)) = Rf (lookup(f(c1, . . . , cn)), c1, . . . , cn)

Figure 3.2: Transforming e-graphs to relational database

Compile(p) = Q(root, v1, . . . , vn)← A

where v1 . . . vn are variables in p

and Aux(p) = root ∼ A

Aux(f(p1, . . . , pn)) = v ∼ Rf (v, v1, . . . , vn), A1, . . . , An

where v is fresh and Aux(pi) = vi ∼ Ai

Aux(x) = x ∼ ∅ where x is a pattern variable

Figure 3.3: Compiling a pattern to a conjunctive query.
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of e-graph. In general, we left the problem of interactive e-matching, where e-matching is

performed on a frequently updated e-graph, as future work (See Chapter 8).

3.1 Reducing e-graphs to relations

The first step of relational e-matching is to transform the e-graph to a relational database.

An e-graph E representing a congruence relation over T (Σ, ∅) will be mapped to a relational

database over Id, the set of e-class ids. For every n-ary symbol f in Σ, We map it to an

n + 1-ary symbol Rf in schema SId. We refer to fields of Rf as eclass-id, child1, . . . , childn

respectively, and they denote the e-class this e-node belongs to and the children e-classes

of this e-node respectively. For every e-node in the e-graph, we map it to an atom in the

relational database. The algorithm is presented in Figure 3.2.

Take the e-graph in Figure 2.1a for example. There are 8 e-classes in total. The g-

application e-node in e-class c1 translates to atom Rg(1, 2), where 1 is the id of the e-class

that contains it and 2 is the id of its child e-class. Similarly, the f -application e-node in

e-class c2 translates to the atom Rf (2, 4, 4), where 2 is the id of the e-class that contains it

and 4, 4 are the ids of its child e-classes. Figure 3.2 only shows the relation representing f

and g. The relations representing constants a, b, c, which are all relations with ≤ 1 atom, are

omitted for brevity.

3.2 Reducing e-matching patterns to conjunctive queries

We reduce every e-matching to a conjunctive query so that it can be run on the relational

representation of e-graphs. We use the algorithm in Figure 3.3 to “unnest” a pattern to

a conjunctive query. The Aux function returns a variable and a conjunctive query atom

list. Particularly, for non-variable pattern f(p1, . . . pn), Aux produces a fresh variable v

and a concatenation of Rf (v, v1, . . . , vn) and atoms from Ai, where vi ∼ Ai is the result of

calling Aux(pi). For variable pattern x, Aux simply returns x and an empty list. Given

a pattern p, the Compile function returns a conjunctive query with body atoms from

Aux(p) and the head atom consisting of the root variable and variables in p. The compiled
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conjunctive query and the original e-matching query are equivalent because there is an one-

to-one correspondence between the output of them. Specifically, each output atom of the

form Q(croot, cx1 , . . . cxk
) denotes an e-matching output (croot, {x1 7→ cx1 , . . . , xk 7→ cxk

}).

With this algorithm, the example pattern f(α, g(α)) is compiled to the following con-

junctive query

Q(root, α) :-Rf (root, α, x), Rg(x, α).

Compared to the original e-matching pattern, this flattened representation enables the pat-

tern search to utilize both the structural and the equality constraints. For example, most of

the database optimizers will synthesize query plans that build and lookup indices on both

join variables (i.e., x and α), which runs in linear time. In contrast, backtracking-based

e-matching takes quadratic time. Backtracking-based e-matching can be seen as a hash

join that only builds and look-ups a single variable (i.e., x), and filter the outputs using

the equality predicates on α. In other words, existing e-matching algorithms will consider

all f(α, g(β)) regardless whether α is congruent to β, while the generated conjunctive query

gives the query optimizer the freedom to synthesize query plans that will consider only atoms

where α ∼= β.

3.3 Answering conjunctive queries with generic join

Finally, we consider the problem of efficiently solving the compiled conjunctive queries. We

propose to use the generic join algorithm to solve the generated conjunctive queries. Although

traditional query plans, which are based on two way joins such as hash joins and merge-

sort joins, are extensively used in industrial relational database engine, they may suffer

from certain conjunctive queries e-matching generates. For example, consider the pattern

f(g(α), g(α)). The synthesized conjunctive query is

Q(α)← Rf (root, x, y), Rg(x, α), Rg(y, α),

which is a cyclic conjunctive query. Two-way join plans suffer on these cyclic queries be-

cause they are unable to leverage all the constraints in the conjunctive query to prune the
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space during enumeration. Consequently, two-way join plans will enumerate terms that do

not satisfy the constraint and prune them away a posteriori. In contrast, the generic join

algorithm will only consider a concrete term when the term satisfies all the constraints.

Moreover, generic joins has comparable performance on acyclic queries with two-way join

plans. These properties make generic join our ideal solver for conjunctive queries generated

from e-matching patterns.
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Chapter 4

DISCUSSION

4.1 Complexity and optimality

Generic join guarantees worst-case optimality with respect to the output size. Our relational

e-matching preserves this optimality. In particular, we have the following theorem:

Theorem 1. Relational e-matching is worst-case optimal; that is, fix a pattern p, let M(p, E)

be the set of substitutions yielded by e-matching on an e-graph E with n nodes, relational

e-matching runs in time Õ(maxE(|M(p, E)|)).

Proof. Notice that there is an one-to-one correspondence between an output atoms of the

generated conjunctive query and the e-matching. Therefore, the worst-case bound is the

same across an e-matching pattern and the conjunctive query it generated. Because generic

join is worst-case optimal, relational e-matching also runs in worst-case optimal time with

respect to the output size.

4.2 Other join algorithms

Although we choose generic join algorithm in relational e-matching, there are also other

choices in the design space. For example, traditional two-way join plans are efficient on

acyclic queries, and extensive research has been done on synthesizing highly efficient query

plans. Moreover, Yannakakis’ algorithm (Papadimitriou and Yannakakis, 1999) is an optimal

algorithm on ayclic queries, running in time equal to the size of the output (with possible

log factors). However, both of the queries suffer on cyclic conjunctive queries. Two-way

join plans spend time enumerating unsatisfying terms, while Yannakakis’ algorithm are not

applicable to cyclic conjunctive queries. It is possible to choose different join algorithms based
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on the cyclicity of the query to take advantages each algorithms. However, we currently does

not implement this.

4.3 Comparison to graph pattern matching

The idea of representing graph data structure as relational databases are not new. For

example, many Datalog programs represent nodes and edges as their own relations to use

relational joins to support efficient queries on graph database, known as graph pattern match-

ing. Compared to the common encoding of graphs, our relational representation of e-graphs

in a relational database is slightly different and specialized for e-graphs. It is a future work

to absorb researches on graph pattern matching for relational e-matching.
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Chapter 5

IMPLEMENTATION

We implemented our relational e-matching algorithms for the egg equality saturation

framework. In this section, we describe several implementation details.

5.1 Overview

Given an e-matching pattern, we first transform it to a conjunctive query using the algo-

rithm described in Section 3.2. Next, we lower the conjunctive query to an execution plan,

represented as a sequence of variables that the generic join will go through. The execution

plan is reconstructed for every new e-graph, because the query compiler may depend on the

statistics of the e-graph to generate the execution plan. We then build the indices for each

atom R(v1, . . . , vk) in the conjunctive query according to the variable ordering. Finally, we

use an efficient interpreter to run the generic join algorithm.

5.2 Variable Ordering

Different variable ordering may result in asymptotically different performance (Amler, 2017;

Aberger et al., 2017). Therefore, choosing an variable ordering is important. Compared to

join plans for binary joins, there is few literature on query plans for generic joins. Therefore,

we developed two heuristics based on empirical experiment. First, we prioritize variables

that are associated to more relations, because the intersected set of more relations are more

likely to have a smaller cardinality. Moreover, we prioritize variables that are attached to

small relations. By intersecting on these variables first, generic join could use the smaller

relations to early prune a large portion of atoms in other relations that is not satisfying.

Using these two constraints, the optimizer is able to find superior query plans than
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the top-down search of backtracking-based e-matching even for linear patterns, where our

relational e-matching does not have more information than e-matching. For example, for

queries like x + α, our optimizer is able to exploit the fact that there is only one atom

in the Rx (i.e., the relation representing constant x), so enumerating this relation and use

attributes of Rx to prune R+ will immediately produces all valid substitutions. Meanwhile,

in the top-down fashion of backtracking-based e-matching, the matching procedure will need

to go through all atoms of R+ and check if constant x resides in their second child. Such

query plan examines much more unnecessary atoms in R+, because only a small number of

+-application e-nodes are connected to x.

5.3 Indexing

The generic join assumes that indices are built for the given variable ordering. However,

they are crucial to the actual performance of generic join (Amler, 2017). We currently use

a recursive trie structure for indexing. The trie is a hash map from the e-class ids to itself.

An atom is represented as a path from the root in the trie, according to the order of visiting.

The indices are built on demand and shared among different e-matching pattern search

on the same e-graph. For most non-trivial e-matching queries, the index building time is

neglectable. We believe there are still space for improvement surrounding indices, such as

optimizing the set intersection operations and using a more cache-friendly representation.

5.4 Other optimizations

Finally, we write specialized implementations for various numbers of relations being inter-

sected at each nested layer of generic join. This makes possible unrolling most of the loops

when manipulating multiple relations together. Moreover, during index building, if the resid-

ual relation is known not to join with any other relations, we switch from trie to a flattened

vector that directly stores the relation, which is more cache friendly and avoid backtracking

during enumeration of the residual relation. In our experiment on handwritten queries, this

optimization enables up to 4× performance gain even on simple queries.
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Chapter 6

EVALUATION

In this section, we first categorize e-matching patterns into three categories. Next, we

evaluate our prototype of relational e-matching with two preliminary experiments, choosing

patterns from each of the categories, and discussed our progress on evaluating full-system

benchmarks. More experiment will be presented in the forthcoming paper.

To investigate the kinds of conjunctive queries an e-matching pattern would generate and

its performance implication on the join algorithms, we categorize the e-matching patterns

into three categories according to the kinds of conjunctive queries they generate:

1. Linear patterns: this is the simplest form of patterns, where no variables occur more

than once in the pattern. Examples of this category include f(α, β) and f(g(α), g(β))).

2. Non-linear acyclic patterns: we define non-linear acyclic patterns to be patterns that

are not linear and satisfy that every multi-occurrence of a variable must occur between

e-nodes that has “distance” ≤ 1 with each other. Examples of this category include

f(α, g(α)) and f(f(α, β), α).

3. Cyclic patterns: we define all other patterns to be cyclic patterns. Examples include

f(g(α), g(α)) and f(f(α, β), g(β))). Note that e-matching patterns of this category are

always reduced to cyclic queries.

All three categories of patterns exist in real-world applications like equality saturation.

For example, the search patterns for commutative law (e.g., a+ b) and associative law (e.g.,

(a+ b) + c) is linear, and the search patterns for the distributive law (e.g., a× b+ a× c) is

cyclic, while that for the rule for reciprocal (e.g., x× (1/x)) is non-linear acyclic.
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We choose two benchmarks from the egg’s test suites, namely the math test suite, which

saturates mathematical expressions, and the lambda test suite, which saturates lambda cal-

culus terms. Both of them are representative of a standard application of equality saturation.

For example, the math test suite has many overlapping rules with Herbie (Panchekha et al.,

2015), an application of equality saturation in the domain of floating-point arithmetic.

We did two preliminary experiments. The first experiment tries to understand the asymp-

totic speedup of relational e-matching. In this experiment, we manually write the implemen-

tation for relational e-matching for three patterns, which are representative of linear patterns,

non-linear acyclic patterns, and cyclic patterns. We benchmark against the e-matching al-

gorithm in egg, which implements the backtracking-based e-matching algorithm described

in de Moura and Bjørner (2007)1, on different e-graph sizes.

The result is shown in Figure 6.1. On both cyclic and non-linear acyclic case, our rela-

tional e-matching achieves asymptotically better performance, up to 426×, over backtracking-

based e-matching by taking advantages of the equality constraints. In the linear case, because

no variable occurs more than once, relational e-matching achieves similar performance as the

backtracking-based e-matching up to a constant factor.2

Next, we compare the performance of relational e-matching as we implemented in egg

against egg’s original e-matching implementation on several benchmarks. The result is pre-

sented with two figures in Figure 6.2. Figure 6.2a only compares the enumeration procedure

of backtracking-based e-matching to that of relational e-matching, excluding time that may

need to build the index before performing generic join, which are shared among different

patterns, and Figure 6.2a makes the same comparison but includes the index building time.

According to Figure 6.2a, relational e-matching achieves substantial speedups for com-

1In fact, egg does not implement all of the instructions of the backtracking virtual machine described in
de Moura and Bjørner (2007), since some of the instructions and their compilation are very complicated.

2Note that the comparison here is between the handwritten relational e-matching, which is compiled, and
the e-matching engine in egg, which is interpreted, because this experiment is performed for the PLDI
SRC, when we have not developed a fully working version of relational e-matching inside egg. Therefore,
the comparison is not perfectly apple-to-apple. However, we can still see the asymptotic trends.
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Figure 6.1: Speedup of relational e-matching over backtracking-based e-matching algorithms



24

(a)

(b)

Figure 6.2: (a) Speedup of relationl e-matching over backtracking-based e-matching on

microbenchmarks without index building time. (b) Speedup of relationl e-matching over

backtracking-based e-matching on microbenchmarks with index building time.
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plex patterns. However, on some simple patterns, relational e-matching does not achieve a

significant speedup compared to backtracking-based e-matching algorithms, and sometimes

relational e-matching is slower. Most of such patterns are linear patterns like (+ (+ ?a ?b)

?c) and (fix ?v ?e). In particular, patterns like (fix ?v ?e) are equivalent to a simple

enumeration of all f -application terms for some function symbol f , which we call singleton

patterns. The relational e-matching has the most slowdown on several singleton patterns be-

cause running singleton patterns is very fast, taking only a few microseconds, so the overhead

related to relational e-matching such as query compilation dominates the run time. Still,

because they only take a few microseconds, the run time for matching such patterns are not

an issue for real applications. Moreover, note the relational e-matching performs order of

magnitude better on pattern (* ?a ?a), which is a singleton pattern, as our query optimizer

exploits the fact that both children of the *-application node are the same and thus only

does a filter over the corresponding relation. In contrast, backtracking-based e-matching

without ad hoc handling can only express this as a backtracking process, which has a larger

overhead.

Comparing Figure 6.2a against Figure 6.2b, we observe the time taken for building indices

to be significant. Many plans where relational e-matching is faster now becomes slower.

This is consistent with the observation made by Amler (2017), where index building is

sometimes the bottleneck of the generic join algorithm. Since our current implementation is

only a prototype, we are currently working on improving the index building time so that the

performance of relational e-matching is able to dominate that of the current implemented

e-matching in egg.

Finally, our next step of experiment is to evaluate relational e-matching on full-system

applications that use egg. We attempted to run Herbie with relational e-matching as the

e-matching procedure. However, we are unable to observe any significant speedup by using

relational e-matching. We speculate the cause is that the workload of Herbie is running only

simple, linear patterns on small e-graphs, so there are no additional equality constraints that

relational e-matching could exploit. We are working on evaluating relational e-matching on
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other applications, such as Tensat (Yang et al., 2021) and Szalinski (Nandi et al., 2020).
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Chapter 7

CONCLUSION

Existing e-matching algorithms are based on backtracking and suffer from problems

like implementation difficulty, run inefficiency, and a loose complexity bound. To tackle

these problems, we propose relational e-matching, an algorithm that efficiently solves the

e-matching problem by reducing it to conjunctive queries. Relational e-matching is based on

the observation that e-matching is definitionally similar to conjunctive queries. Leveraging

this observation, relational e-matching maps an e-graph to a set of relations and compiles

every e-matching pattern to a conjunctive query. As conjunctive query has been extensively

studied in the database community for decades, relational e-matching is conceptually sim-

pler. Moreover, such relational representation provides an unified way to express not only

structural constraints, but also equality constraints, which are constraints that backtracking-

based e-matching fails to take advantage of during query planning. By exploiting equality

constraints, relational e-matching performs asymptotically faster than existinge-matching al-

gorithms on many queries. Finally, to avoid enumerate an unnecessarily large space of can-

didates, relational e-matching uses generic join to solve the generated conjunctive queries,

which makes relational e-matching worst-case optimal.

We implemented relational e-matching in egg and evaluate our relational e-matching

on some microbenchmarks. Preliminary experiment indicates that relational e-matching

shows asymptotic speedup over backtracking-based e-matching algorithms on both cyclic

and nonlinear acyclic patterns. However, for linear patterns, relational e-matching shows

similar performance as backtracking-based e-matching algorithms, up to a constant factor.

In the future, we plan to evaluate relational e-matching more extensively and on more realistic

e-graph applications.
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Chapter 8

FUTURE WORKS

We believe there is a deep connections between e-graphs and relational dabase and e-graph

can really benefit from research fruits of the database community. This thesis is only a very

first attempt to bridging e-graphs and relational databases. Many things are left to be done.

This sections sketches a few future works that are worth investigating. Some of them are

technical, while others require insights into both areas.

Experiments. The current experiments are still very preliminary. To fully explore the

design space of various join algorithms (e.g., hash join, Yannarakis’ join algorithm) and

query optimization strategies (e.g., different variable ordering for generic join, as well as

standard optimization techniques for relational queries) for the scenarios of e-matching.

Multi-patterns. A common extension to e-matching is multi-patterns (de Moura and

Bjørner, 2007). Multi-patterns generalize single patterns to multiple patterns that share

the the same of variables. For example, α × β, α × γ is a multi-pattern that searches for

substitutions σ that satisfy σ(α × β) and σ(α × γ) are both present simultaneously. They

are extensively used in SMT solvers and are also useful in various equality saturation sce-

narios. Specialized algorithms are developed for multi-patterns. However, from a relational

perspective, the conjunctive query generated by a multi-pattern is just a sequence of con-

junctive query atoms generated from each pattern placed together. Therefore, the relational

e-matching naturally generalizes to the scenarios of multi-patterns.

Optimizing query plans for generic joins. There are not as many research done on

optimizing the variable ordering as on optimizing traditional join plans. EmptyHeaded is
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the first graph database engine that uses generalized hypertree decompositions (GHD) to

optimize generic join and achieves performance similar to low-level graph engines. However,

it only focuses achieves a stronger run-time worst-case optimality guarantee, but does not

take variable ordering into considerations. Yet it has been shown different variable ordering

may leads to asymptotically different results (Amler, 2017). Therefore, it is one of our future

directions to design algorithms to search for an optimal variable orderings during query

optimization.

E-graph engine purely on relational databases. This paper only exploits the possi-

bility of doing e-matching on a relational representation of e-graphs. It is our assumption

that normal e-graph operations like merge and lookup are still done on the original e-graph

representation and the relational representation will be re-computed during each (batch of)

e-matching. However, it is possible to build an e-graph engine purely on top of relational

databases by canonicalizing every e-node on the fly during merge. Although we expect it

incurs performance penalty to use a purely relational database to describe e-graph and oper-

ations on e-graph, it is ideal for situations where interactive e-matching is required. In such

cases, it is unrealistic to rebuild the relational representation for every e-matching invocation,

while such cost can be avoided if all e-graph operations are directly applied to its relational

representation. Moreover, by describing every e-matching operations in terms of the lan-

guage of relational databases, it is possible to benefit from the literature on incremental

maintenance of relational databases and design an algorithm for incremental e-matching.

Exploring functional dependency for relational e-matching. Functional dependen-

cies are constraints such as two atoms having the same value on attributes attr1, . . . attrn−1

implies they also share the same value on attribute attrn. Functional dependency are ubiq-

uitous in relational databases, and they are also present in the relational representation of

e-graphs. In particular, For a relation Rf (eclass-id, child1, . . . , childk) representing f , the

value of eclass-id are determined by the values of child1, . . . childk.
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Our current relational e-matching does not take functional dependencies into considera-

tions, but they may have an impact on the bound of worst-case output. Fortunately, there are

worst-case optimal join algorithms that guarantee optimality with the presence of functional

dependencies. Therefore, it is worth incorporating functional dependencies into relational

e-matching and derives a tighter worst-case bound for relational e-matching.

Datalog engine with internalized congruence. One of our initial motivation for this

work is to develop a more flexible language for egg. Tasks in egg are described as rewrite

rules that add the rewritten terms into the same e-class as the matched terms. Therefore,

egg only supports equivalence reasoning, and it is very hard to describe relations that are

not symmetric, such as a transitive closure. However, such directed relations are prevalent

in real-world applications. One idea is to make the e-graph engine an extension of the

Datalog language (Green et al., 2013). Datalog is a logic programming language that can

be efficiently evaluated, and many relational properties such as transitivity, reflexivity, and

symmetry can be naturally expressed in Datalog. However, many relations, such as the

equivalence relation, may be asymptotically slower if directly expressed in Datalog compared

to a dedicated data structure. Soufflé is a Datalog tool that support efficient equivalence

relations as a specialized relation and uses an efficient union-find data structure to maintain

equivalence relations. Therefore, it is desired to extend Datalog language to efficient maintain

congruence closures. On the one hand, this extends the equivalence reasoning in e-graphs

to other kinds of reasoning as well. On the other hand, it makes certain existing Datalog

programs efficient by using a more dedicated data structure.
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