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Datalog, it supports efficient incremental execution, cooperating analyses, and lattice-based reasoning. Like

EqSat, it supports term rewriting, efficient congruence closure, and extraction of optimized terms.
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floating-point term rewriter—that have been hampered by features missing from Datalog but found in EqSat

or vice-versa. We evaluate egglog by reimplementing those projects in egglog. The resulting systems in

egglog are faster, simpler, and fix bugs found in the original systems.
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1 INTRODUCTION
Equality saturation (EqSat) and Datalog are both fixpoint reasoning frameworks with many ap-

plications, extensions, and high-quality implementations [Jordan et al. 2016; Willsey et al. 2021].

They share a common setup: the user provides rules and an initial set of facts (a term in EqSat

and a database in Datalog), then the system derives a larger and larger set of facts from those

inputs. However, their commonalities have not—until now—been fully realized or exploited. As a

result, the frameworks have developed independently and are used in different domains. Datalog

is well-studied by the databases community, and practitioners use modern implementations to

build program analyses [Balatsouras and Smaragdakis 2016; Barrett and Moore 2013; Smaragdakis

and Bravenboer 2010]. Equality saturation is a more recent, term-centric technique favored in the

programming languages community for program optimization and verification.
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As users apply EqSat and Datalog to new, more demanding problems, the limitations of each tool

become apparent. For example, Herbie [Panchekha et al. 2015], a tool that uses EqSat to optimize

floating-point accuracy, relies on unsound rewrites because it lacks the analyses to prove that

certain rewrites are safe (e.g. 𝑥/𝑥 → 1 only if 𝑥 ≠ 0). To combat the unsoundness, Herbie must

validate the results of EqSat and discard them if unsoundness was detected. On the Datalog side,

cclyzer++ [Barrett and Moore 2013], a recent points-to analysis system implemented in Datalog

that supports Steensgaard analyses [Steensgaard 1996] for LLVM [Lattner and Adve 2004] resorted

to an ad-hoc implementation of union-find, because the provided implementation of equivalence

relations was too slow. The resulting implementation’s complexity led to bugs in the pointer

analysis. In short, EqSat struggles to support rich analyses, and equational reasoning in Datalog is

complex and slow.

Our key insight is that the efficient equational reasoning of EqSat and the rich, composable semantic
analyses of Datalog make up for each other’s weaknesses, and unifying the two paradigms brings
together—and goes beyond—the best of both worlds. In fact, spontaneous developments in both

communities have already begun converging towards each other: Datalog tools have added efficient

equivalence relations [Nappa et al. 2019], lattices [Madsen et al. 2016; Sahebolamri et al. 2022], and

some support for datatypes [Developers [n.d.]], while the EqSat community has recently developed

support for conditional rewriting, lattice-based analyses [Cheli 2021; Willsey et al. 2021], and

relational pattern matching [Zhang et al. 2022]. We bring this trend to completion and close the

gap between EqSat and Datalog.

In this work, we propose egglog, a fixpoint reasoning system that subsumes both EqSat and

Datalog. It contains all of the innovations listed above as well as new ones, and it addresses crucial

limitations that have prevented progress in real-world applications. egglog is essentially a Datalog

engine with two main extensions. First, egglog has a built-in, extensible notion of equality. The

user can assert that two terms are equivalent, from which point on they are indistinguishable to

the system. For example, consider a relation with a single tuple: 𝑅 = {(𝑎, 𝑏)} for distinct 𝑎 and 𝑏.
The query 𝑅(𝑥, 𝑥) would yield nothing, but if the user asserts that 𝑎 and 𝑏 are equivalent, then the

query would return the equivalence class containing both 𝑎 and 𝑏. Second, egglog has built-in

support for (uninterpreted) functions. From a relational perspective, a function is a relation with a

functional dependency from its arguments to its output, i.e., the output is uniquely determined by

the arguments. However, user-extensible equality introduces challenges for maintaining functional

dependencies. Consider a function 𝑓 such that 𝑓 (𝑎) = 𝑏 and 𝑓 (𝑐) = 𝑑 , but 𝑏 does not (yet) equal
𝑑 . What happens when the user asserts that 𝑎 and 𝑐 are equivalent? An egglog function can be

annotated with a merge expression, a novel mechanism that egglog uses to resolve functional

dependency violations by combining the two conflicting output values. In the above case, 𝑓 ’s merge

expression might assert that 𝑏 = 𝑑 (essentially asserting congruence of 𝑓 ), or return the supremum

of 𝑏 and 𝑑 . The flexibility of merge expressions allows egglog to exceed the expressive power of

both EqSat and Datalog extensions with lattices. The high-level egglog language allows the user
to specify complex interactions among terms, equivalence classes, and lattice values. At the same

time, highly optimized algorithms for relational and equational reasoning work together to make

egglog efficient.

The combination of EqSat and Datalog also brings many practical—if somewhat more prosaic—

benefits. For example, Zhang et al. [2022] observed that EqSat is hampered by inefficient e-matching

(pattern matching modulo equality) algorithms, and that a relational approach can be vastly more

efficient. egglog’s Datalog-first design naturally supports efficient e-matching by reducing it to

a relational query. This goes even further: incremental e-matching is only supported in some

SMT solvers like Z3 [De Moura and Bjørner 2008] and has not yet made its way into EqSat

implementations, while egglog supports them for free with semi-naïve evaluation [Balbin and
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Ramamohanarao 1987], a common technique that makes Datalog incremental. egglog’s support
for functions provides the basis for working with terms, which only have limited support in other

Datalog systems [Developers [n.d.]]. Users can also define multiple functions and datatypes to

model their domain, unlike most EqSat tools [Cheli 2021; Willsey et al. 2021] where users are forced

to use a single, ad-hoc datatype. Finally, egglog is designed as a language (as well as a library),

making it more accessible than EqSat libraries [Cheli 2021; Willsey et al. 2021] that are locked to

their implementation language.

We perform two case studies showing that egglog out-performs state-of-the-art applications

of EqSat and Datalog respectively. First, we show that egglog makes Steensgaard-style points-to

analyses faster and easier to write. Compared to the Soufflé Datalog system, egglog computes

the points-to analysis 4.96× faster. Second, we demonstrate the power of egglog with a new,

sound implementation of Herbie’s EqSat procedure. This allows Herbie to perform aggressive

optimizations soundly, and return results faster given the same error tolerance.

In summary, this paper makes the following contributions:

• We introduce a bottom-up, Datalog-like logic language for equality saturation and similar

unification-based algorithms.

• We present a fixpoint semantics for the core language of egglog.
• We present an implementation for egglog with optimizations from database research such

as semi-naïve evaluation.

2 BACKGROUND
egglog is designed as a Datalog variant with extensions that make it subsume EqSat. This section

will introduce both Datalog and EqSat in their own terms, while Section 3 will show how they both

fit within the egglog framework.

2.1 Datalog
Figure 1 shows a Datalog program to compute the transitive closure of a graph. Datalog is a

recursive database query language that represents data as relations. Each relation is a set of tuples,

and all tuples in the same relation share the same arity. A Datalog program consists of a set of rules.
Each rule is a conjunctive query of the form 𝑄 (x) :- 𝑅1 (x1), 𝑅2 (x2), . . . , 𝑅𝑛 (x𝑛) where each x and x𝑖
is a tuple of variables or constants. The atom 𝑄 (x) is called the head of the rule, and the atoms

𝑅𝑖 (x𝑖 ) comprise the body. The body binds variables to be used in the head to create new facts;

all variables in the head must appear in the body. Specifically, running a rule adds the following

facts: {𝑄 (x[𝜎]) | ∧𝑖 x𝑖 [𝜎] ∈ 𝑅𝑖 }, where 𝜎 is a substitution that maps all the variables in the rule

to constants. In other words, querying the body creates substitutions such that every substituted

body atom is in the database; these substitutions are then applied to the head to create new facts.

Each rule can be seen as a function from the current database to a new database that includes

the facts created by the rule; call this function 𝑇𝑟 for some rule 𝑟 . The set of all rules 𝑟 in a

Datalog program 𝑝 therefore defines a function 𝑇𝑝 from the current database to a new database:

𝑇𝑝 (DB) =
⋃

𝑟 ∈𝑝 𝑇𝑟 (DB). This function is called the immediate consequence operator (ICO) of the

program, which we denote 𝑇𝑝 . To run a Datalog program, we start with an empty database and

repeatedly apply 𝑇𝑝 until the database stops changing. A fundamental result in Datalog is that

every program terminates, and the final result is the least fixpoint of 𝑇𝑝 [Abiteboul et al. 1995].

Datalog became popular in programming languages research as a declarative language for

specifying large-scale program analyses such as points-to analyses [Smaragdakis and Bravenboer

2010]. In order to support abstract interpretation-style analyses, researchers have extended Datalog

towork over lattices. In the lattice semantics, a relation is viewed as a function from tuples to a lattice,

We then generalize Datalog rules to be over functions: 𝑄 (x) ↦→𝑥 :- 𝑅1 (x1) ↦→𝑥1, · · · , 𝑅𝑛 (xn) ↦→𝑥𝑛 .

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 125. Publication date: June 2023.



125:4 Y. Zhang, Y. R. Wang, O. Flatt, D. Cao, P. Zucker, E. Rosenthal, Z. Tatlock, and M. Willsey

𝐸 (1, 2).
𝐸 (2, 3).
𝐸 (3, 4).

𝑇𝐶 (𝑥,𝑦) :- 𝐸 (𝑥,𝑦) .
𝑇𝐶 (𝑥,𝑦) :- 𝑇𝐶 (𝑥, 𝑧), 𝐸 (𝑧,𝑦).

(a) Transitive closure in Datalog. Facts (e.g.
𝐸 (1, 2)) are given as rules without bodies.

iter# E TC

0 ∅ ∅
1 {(1, 2), (2, 3), (3, 4)} ∅
2 {. . .} {(1, 2), (2, 3), (3, 4)}
3 {. . .} {. . . , (1, 3), (2, 4)}
4 {. . .} {. . . , (1, 4)}

(b) Execution trace of transitive closure. “. . .” includes tuples
from the cell directly above.

Fig. 1. Transitive closure is the classic Datalog example. It iteratively computes the transitive closure (𝑇𝐶) of
an edge relation 𝐸 by applying the rules in Figure 1a.

/

a

*

2

(a) E-graph represents (𝑎 × 2)/2.

/

a

*

2 1

<<

(b) Rewrite 𝑥 × 2→ 𝑥 ≪ 1.

/

a

*

2 1

<<

*

/

(c) Rewrite (𝑥×𝑦)/𝑧 → 𝑥×(𝑦/𝑧).

Fig. 2. Applying rewrites over an example e-graph (figures from Willsey et al. [2021]). A solid box denotes an
e-node, and a dotted box denotes an e-class. E-nodes consist of a function symbol and children e-classes, and
e-classes contain a set of e-nodes.

The value of 𝑄 on input x is the supremum of valid 𝑥s producible by the body, i.e., 𝑄 (x) = ⊔{𝑥 |∨
xfree 𝑅1 (x1) = 𝑥1 ∧ . . . ∧ 𝑅𝑛 (xn) = 𝑥𝑛} where xfree is the set of variables in the body that do not

appear in the head and ⊔ is a lattice join (i.e., supremum) operator. egglog’s support for lattices is
motivated by other modern Datalog implementations [Abo Khamis et al. 2022; Madsen et al. 2016;

Sahebolamri et al. 2022] that support this extension.

2.2 Equality Saturation
Traditional term rewriting applies one rule at a time and forgets the original term after each step,

so it is sensitive to the ordering of the rewrites. For example, rewriting (𝑎 × 2)/2 to (𝑎 ≪ 1)/2 is
locally good, but it prevents future opportunities to cancel out 2/2. Equality saturation (EqSat) [Tate

et al. 2009] is a technique to mitigate this phase-ordering problem. EqSat fires all the rules in each

iteration and keeps both original and rewritten terms in a special data structure called the e-graph.

An e-graph [Nelson 1980] is a compact data structure that represents large sets of terms efficiently.

An e-graph is a set of e-classes, and each e-class is a set of equivalent e-nodes. An e-node is function

symbol with children e-classes (not e-nodes).

An e-graph can compactly represent an exponential number of terms compared to the size of the

e-graph. We say an e-graph represents a term 𝑡 if any of its e-classes represents 𝑡 , and an e-class

represents 𝑡 if any e-node in the e-class represents it. An e-node 𝑡 = 𝑓 (𝑐1, . . . , 𝑐𝑛) represents a
term 𝑓 (𝑡1, . . . , 𝑡𝑛) if each 𝑐𝑖 represents 𝑡𝑖 . An e-graph induces an equivalence relation over terms:

two terms are considered equivalent if they are represented by the same e-class. This equivalence
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relation is also congruent: if an e-graph represents two terms 𝑎 = 𝑓 (𝑎1, . . . , 𝑎𝑛) and𝑏 = 𝑓 (𝑏1, . . . , 𝑏𝑛)
such that e-graph shows 𝑎𝑖 ≡ 𝑏𝑖 , then the e-graph can also show 𝑎 ≡ 𝑏.1

Figure 2 shows an example e-graph and two rule applications. We start with the initial e-graph

representing only term (𝑎×2)/2. To apply a rewrite rule 𝑥 ×2→ 𝑥 ≪ 1, we first search for matches

of left-hand patterns using a procedure called e-matching (pattern matching modulo equality). This

produces substitutions (in this case, only one: {𝑥 ↦→ 𝑎}) that we then we apply to right-hand side

pattern. Each resulting term (e.g., 𝑎 × 2) is finally merged into the e-class that the left-hand side

pattern matched.

Extensions. Standard EqSat is purely syntactic. In some cases, this prevents users from writing

sound rewrites. For example, the rewrite

√
𝑥2 → 𝑥 is sound iff 𝑥 is non-negative, but proving this

requires semantic analyses. A recent technique called e-class analyses [Willsey et al. 2021] allows

for semantic analyses in EqSat. An e-class analysis associates every e-class in an e-graph with a

semi-lattice value that is a semantic abstraction of the term. During the EqSat algorithm, the lattice

data are propagated from children to parents e-classes, and merged via lattice joins. For example, an

analysis could track the lower bounds of e-classes, which are initially −∞ and increase over time as

new terms are represented in these e-classes via rewrites. In egg, the most popular EqSat toolchain,

e-class analyses are currently limited. An e-graph can only have a single e-class analysis, it can

only propagate information upwards from children to parents, and it requires writing low-level

code in the host programming language (Rust in egg’s case).
Multi-patterns are another commonly used extension to e-matching (and thus EqSat). Typically,

e-matching only supports patterns matching a single term each. A multi-pattern is a set of multiple

patterns to be matched simultaneously. For example, TenSat [Yang et al. 2021] is an equality

saturation based tensor graph optimizer that uses rewrite rules to share matrix multiplications.

It matches patterns 𝑒1 = matmul(𝑀1, 𝑀2) and 𝑒2 = matmul(𝑀1, 𝑀3) simultaneously, and then

creates the expression 𝑒3 = matmul(𝑀1, concat (𝑀2, 𝑀3)) and merges 𝑒1 with split
1
(𝑒3) and 𝑒2 with

split
2
(𝑒3). Previous works have developed algorithms for multi-patterns [de Moura and Bjørner

2007; Yang et al. 2021], but they are suboptimal and complex.

Relational e-matching [Zhang et al. 2022] is a recent technique to improve e-matching per-

formance, including on multi-patterns, by reducing it to a relational query. However, relational

e-matching suffers from the “dual representation” problem. An equality saturation engine has to

switch back and forth between the e-graphs and the relational database representations. This can

sometimes take a significant amount of the run time, reducing the benefits of this approach. Rela-

tional e-matching hints at the fundamental connection between e-graphs and relational databases,

but it only applies the insights to e-matching. We further exploit the connection in egglog, building
a Datalog-inspired system that captures the entire EqSat algorithm and goes beyond.

3 EGGLOG

egglog is a logic programming language that bears many similarities to Datalog, and it also

incorporates features that allow for program optimization and verification as in equality saturation.

In this section, we approach egglog by example, starting from the Datalog perspective and adding

features until it subsumes equality saturation.

3.1 Datalog in egglog

egglog uses a concrete syntax based on s-expressions, but despite this surface-level difference,

readers familiar with Datalog should find many egglog programs familiar. The program in Figure 3a

1
In e-graph implementations that canonicalize e-nodes, congruence amounts to deduplication of e-nodes since nodes 𝑎 and

𝑏 would canonicalize to identical e-nodes.
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1 (relation edge (i64 i64))

2 (relation path (i64 i64))

3

4 (rule ((edge x y))

5 ((path x y)))

6 (rule ((path x y) (edge y z))

7 ((path x z)))

8

9 (edge 1 2)

10 (edge 2 3)

11 (edge 3 4)

12

13 (run)

14 (check (path 1 4)) ;; succeeds

(a) Reachability in the classic Datalog style.

1 (function edge (i64 i64) i64)

2 (function path (i64 i64) i64 :merge (min old new))

3

4 (rule ((= (edge x y) len))

5 ((set (path x y) len)))

6 (rule ((= (path x y) xy) (= (edge y z) yz))

7 ((set (path x z) (+ xy yz))))

8

9 (set (edge 1 2) 10)

10 (set (edge 2 3) 10)

11 (set (edge 1 3) 30)

12

13 (run)

14 (check (path 1 3)) ;; prints "20"

(b) Reachability including shortest path length.

Fig. 3. egglog supports classic Datalog programs like reachability written in the natural way. Functions
and :merge allow egglog to support Datalog with lattices similar to tools like Flix [Madsen et al. 2016] or
Ascent [Sahebolamri et al. 2022].

computes the transitive closure of a graph, just like the Datalog program in Figure 1a. It first declares

two relations of pairs of 64-bit integers (i64 is one of egglog’s base types). The edge relation stores

the edges of a graph and is initially populated manually on lines 9-11. The path relation is populated

by the rules on lines 4-7. These rules compute the transitive closure of the edge relation. Finally, the

last two lines execute the program and check that there is a path from 1 to 4.

Let us take a closer look at the second rule in Figure 3a: it states that if there is a path from 𝑥 to

𝑦 and an edge from 𝑦 to 𝑧, then there is a path from 𝑥 to 𝑧. In egglog, a rule has two parts: a query
and a list of actions.2 The query is a set of patterns, all of which must match for the rule to fire. If

all patterns do match, the query binds each variable to a value. The actions dictate what happens

when the rule fires, and they can use the variables that are bound by the query. Typically, as in this

example, the actions assert new facts to be added to the database.

3.2 Functions and :merge

Unlike traditional Datalog, egglog stores data as partial functions rather than relations. A relation

in egglog actually desugars to a function whose return type is the built-in unit type. To model

a unary relation 𝑅, we can use a function 𝑓𝑅 to unit such that 𝑓𝑅 (𝑥) = () if 𝑥 ∈ 𝑅 else undefined.

While a Datalog program’s rules add tuples to relations, egglog’s functions become defined for

more and more tuples over the course of a program’s execution, a concept that we will explore in

more detail in Section 4.2. Every user-defined function in egglog is backed by a map (as opposed to

a set in in Datalog). Crucially, the map enforces the functional dependency from inputs to outputs.

In other words, a function maps each input to a unique output. Throughout this paper, we will use

the term “table” to refer to either the backing map of an egglog function or the backing set of a

Datalog relation.

Consider the program in Figure 3b that computes the length of shortest path between all nodes.

Ignoring the :merge declaration for now, the program is substantially similar to the reachability

2
Note that this is backwards from the more traditional Datalog syntax: path(X, Z) :- path(X, Y), edge(Y, Z). An
egglog rule’s query and actions are analogous to the body and head of a Datalog rule, respectively.
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program in Figure 3a, but it uses functions instead of relations. The program defines edge and path

functions to i64 rather than functions to unit (i.e., relations). The first rule (the base case) in Figure 3b

is similar to before: it says that an edge of length len from 𝑥 to 𝑦 implies there is a path of (at most)

length len from 𝑥 to 𝑦. The query uses = to bind the output of the edge function to the variable len.

In the action, we see the set construct, which asserts that a function maps some arguments to a

given value. The action in the analogous rule in Figure 3a desugars to (set (path x y) ()). Note

that if the arguments are already mapped to a value, we need to reconcile the old value with the

new one to preserve the functional dependency. This is resolved by the :merge declaration which

we will describe next.

The second rule in Figure 3b is the transitive case, and here we see the purpose of the :merge

declaration. This rule says that if there is a path from 𝑥 to 𝑦 of length 𝑥𝑦, and an edge from 𝑦 to 𝑧 of

length 𝑦𝑧, then there is a path from 𝑥 to 𝑧 of length 𝑥𝑦 +𝑦𝑧. But what if the function path is already

defined on the arguments 𝑥 and 𝑧? Functions must map equivalent arguments to unique output, so

the :merge declaration tells egglog how to resolve this conflict. Given the facts later in Figure 3b, the

program will discover two paths from 1 to 3: the single edge with length 30 will be discovered first,

and then two-edge path with length 20. When (set (path 1 3) (+ 10 10)) is executed, egglog must

come up with a single value to map (path 1 3) to. To do this, it evaluates the expression given after

:merge in the function’s declaration with old and new bound to the old and new values, respectively.

In this case, path’s :merge expression simply takes the minimum of the two path lengths. It can

be viewed as the join operator, which takes the supremum of a set of values, of the min lattice

over i64 where the partial order is 𝑥 ⊑ 𝑦 ⇐⇒ 𝑥 ≥ 𝑦. This is similar to the lattice semantics of

Flix [Madsen et al. 2016], which also enforces functional dependency by taking the join over the

old and new values in some lattice. However, egglog does not restrict the :merge expression to only

join operations over lattices. In the following sections we will show how a :merge expression that

unifies values naturally gives rise to equality saturation.

3.3 Sorts and Equality
egglog gives the user the ability to declare new uninterpreted sorts, and functions use these new

sorts as inputs or outputs. Crucially, values of user-defined sorts (as opposed to base types) can

be unified by the union action. union-ing two values makes them point to the same element in

the underlying universe of uninterpreted sorts. In other words, values that have been unified are

essentially indistinguishable to egglog, and all unified variables can be substituted for the same

pattern variable.

Consider an enhanced version of path reachability in Figure 4a, where we use unification to

implement node contraction (sometimes called vertex contraction). The program declares a new

sort Node, which is necessary because base types (like i64) cannot be unified. The mk function is

the sole constructor of Nodes. After the rule declarations (same as in Figure 3a) and some edge

assertions, we see our first union action, which takes two arguments of the same user-defined sort

and unifies them. Now that nodes 3 and 5 are unified, running the rules will indeed find a path

from 1 to 6, a path that did not exist before the unification.

In egglog, users define uninterpreted sorts. A sort is a set of opaque integer values called ids and
an equivalence relation over those ids. The equivalence relation is implemented with a union-find

data structure [Tarjan 1975] that can canonicalize ids; two ids are equivalent iff they canonicalize

to the same id. Equivalent ids are considered indistinguishable by egglog. In fact, egglog ensures

that all ids appearing in the database are canonical. These ids corresponds to e-class ids from the

EqSat perspective.

The second line of Figure 4a declares mk, a function from i64 to Node. This looks like a constructor,

for Nodes, but it is just like any other function from egglog’s perspective; the mk function is backed

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 125. Publication date: June 2023.



125:8 Y. Zhang, Y. R. Wang, O. Flatt, D. Cao, P. Zucker, E. Rosenthal, Z. Tatlock, and M. Willsey

(sort Node)

(function mk (i64) Node)

(relation edge (Node Node))

(relation path (Node Node))

(rule ((edge x y))

((path x y)))

(rule ((path x y) (edge y z))

((path x z)))

(edge (mk 1) (mk 2))

(edge (mk 2) (mk 3))

(edge (mk 5) (mk 6))

(union (mk 3) (mk 5))

(run)

(check (edge (mk 3) (mk 6)))

(check (path (mk 1) (mk 6)))

(a) Combining nodes with unification

(datatype Math

(Num i64)

(Var String)

(Add Math Math)

(Mul Math Math))

;; expr1 = 2 * (x + 3)

(define expr1 (Mul (Num 2) (Add (Var "x") (Num 3))))

;; expr2 = 6 + 2 * x

(define expr2 (Add (Num 6) (Mul (Num 2) (Var "x"))))

(rewrite (Add a b) (Add b a))

(rewrite (Mul a (Add b c)) (Add (Mul a b) (Mul a c)))

(rewrite (Add (Num a) (Num b)) (Num (+ a b)))

(rewrite (Mul (Num a) (Num b)) (Num (* a b)))

(run)

(check (= expr1 expr2))

(b) Basic equality saturation

Fig. 4. Unification and EqSat in egglog.

by a map from i64s to Node ids. In this program, we never query over the mk function, but we do

call it, treating it like a total function. What is the value of (mk 1), especially since we did not set

it to anything prior to calling it? Functions in egglog can be imbued with a :default expression

that extends the partial function as defined by the underlying map to be total. Calling a function

(f x) will first see if the map for function f defines an output for x. If so, it returns that output.

Otherwise, egglog evaluates the :default expression, stores the result in the map, and returns it.

Unless otherwise specified, the :default for functions that output a user-defined sort is to create

an equivalence class in the union-find and return its id (the “make-set” operation); for base types

the default :default is to crash the program. In other words, calling a function that outputs a

user-defined sort is essentially a “get or make-set” operation.

The upcoming subsection will discuss how these features enable equality saturation, but Sec-

tion 6.1 will demonstrate how the canonicalizing union-find is useful even in a domain where

Datalog is traditionally strong: pointer analysis.

3.4 Terms and Equality Saturation
In Figure 4a, the Node sort only has a single constructor, mk, which takes an i64. egglog also supports
functions that take user-defined sorts as inputs. In this way, terms are easily constructed in egglog.
Combined with the built-in equivalence relation, this term representation directly supports equality

saturation in egglog.
Consider Figure 4b, where we define a datatype Math that represents a simple language of arith-

metic expressions. The datatype construct is sugar for a sort declaration and a function declaration

for each constructor. Each constructor is a function that returns a value of type Math, and its :default

behavior creates a fresh id as described above (we will get to its :merge behavior shortly). Now we

can create terms by just nesting function calls. The define statements do just that, creating two

terms that we will later prove are equivalent. These statements actually create nullary (constant)

functions; (define x e) desugars to (function x () T) (set (x) e)where T is the type of e. Evaluating
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these terms adds them to the database (if not already present) thanks to the :default behavior of

the constructors.

Term rewriting in equality saturation has two important qualities: (1) pattern matching is

done modulo equality and (2) rewriting is non-destructive, i.e., it only adds information to the

e-graph/database. egglogmeets both of these criteria: (1) all queries are performed modulo equality

since egglog canonicalizes the database with respect to its built-in equivalence relation, and (2)

egglog rules (like standard Datalog rules) only add information to the database. egglog provides the
rewrite statement to simplify creating equality saturation rewrite rules. A (rewrite p1 p2) statement

desugars to a rule that queries for p1, binds it to some variable, and unions the variable with p2:

(rule ((= __var p1)) ((union __var p2))).

The program in Figure 4b proves expr1 equivalent to expr2 using two uninterpreted rewrites and

two that interpret the Add and Mul functions using the built-in + and * functions over i64. EqSat

frameworks like egg require the user to separate the uninterpreted rules from the interpreted part

from the computed part using an e-class analysis [Willsey et al. 2021]. egglog uses rules for both.

Like other functions that output user-defined sorts, the Math constructors’ :merge behavior is

to union the two ids. Combined with egglog’s canonicalization, this means that the built-in

equivalence relation is also a congruence relation with respect to these functions. Consider the

following map for the Add function: {(𝑎, 𝑏) ↦→ 𝑐, (𝑎, 𝑑) ↦→ 𝑒}. If we union 𝑏 and 𝑑 such that 𝑏 is now

canonical, canonicalizing the database reveals a violation of the functional dependency from Add’s

inputs to its output: (𝑎, 𝑏) ↦→ 𝑐 but also (𝑎, 𝑏) ↦→ 𝑒 . To resolve the conflict, egglog invokes the

:merge expression of the Add function, which in this case unions 𝑐 and 𝑒 .

After running the rules, the final line checks that expr1 and expr2 are now equivalent. The type of

both expr1 and expr2 is Math—a user-defined sort—so the underlying value of the expressions are

both ids. Since egglog canonicalizes the database, the check is implemented with simple equality

on the ids. egglog supports optimization as well as verification; the extract command prints the

smallest term equivalent to its given input.

3.5 Beyond EqSat
egglog is not limited to just Datalog or EqSat; the combination allows for possibilities outside the

reach of either tool. The combining nodes example from Figure 3a hints at the power of unification

in Datalog, and Section 6.1 takes this further by implementing a unification-based pointer analysis

in egglog. In Section 6.2, we go the other way, implementing several Datalog-like anaylses to assist

an EqSat-powered term rewriting system.

But egglog goes beyond these applications; we describes more egglog pearls in the full version

[Zhang et al. 2023], including functional programming, type analyses for the simply typed lambda

calculus in equality saturation, type inference for Hindley-Milner type systems, multivariable

equational solving, and matrix algebra optimization with Kronecker products. These pearls hint at

the potential novel applications in program optimizations and analyses using egglog in the future.

4 SEMANTICS OF EGGLOG

In this section we describe the semantics of core egglog. Core egglog differs from the full egglog
language in several aspects. For example, egglog allows multiple actions in a rule while core

egglog allows only one atom in the head, and core egglog does not have the union operation.

These egglog features can be desugared into the core language. However, there are also some

assumptions we made about the core egglog. For example, we assume the :merge expression over

ids are union and the :merge expressions over interpreted constants is the join operator of a given

lattice, while egglog allows :merge to be any valid egglog expression. In other words, the core

egglog captures a well-behaving subset of the full egglog language.
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Program 𝑃 ::= 𝑅1, . . . , 𝑅𝑛
Rule 𝑅 ::= 𝐴 :- 𝐴1, . . . 𝐴𝑚 .

Atom 𝐴 ::= 𝑓 (𝑝1, . . . , 𝑝𝑘 ) ↦→ 𝑜 | 𝑓 (𝑝1, . . . , 𝑝𝑘 )
Pattern 𝑝 ::= 𝑓 (𝑝1, . . . , 𝑝𝑘 ) | 𝑜
Term 𝑡 ::= 𝑓 (𝑡1, . . . , 𝑡𝑘 ) | 𝑣
Base pattern 𝑜 ::= 𝑣 | 𝑥
Constant 𝑣 ::= 𝑐 | 𝑛
Interpreted Constant 𝑐 ∈ 𝐶
Uninterpreted Constant 𝑛 ∈ 𝑁
Variable 𝑥,𝑦, . . .

Fig. 5. Syntax of core egglog.

4.1 Syntax
Given the set of (interpreted) constants 𝐶 , the syntax of the core egglog language is shown in

Figure 5. An egglog program is defined as a list of rules, and each rule consists of an atom in the

head and a list of atoms in the body. An atom has the form 𝑓 (𝑝1, . . . , 𝑝𝑘 ) ↦→ 𝑜 and intuitively means

function 𝑓 has value 𝑜 on 𝑝1, . . . , 𝑝𝑘 . A pattern 𝑝 is a nested expression constructed using function

symbols, variables, and constants. We additionally define a ground term (or term) 𝑡 to be a pattern

with no variables, and a ground atom to be an atom where all the patterns are ground terms.

A valid egglog program should not explicitly refer to a specific uninterpreted constant 𝑛. We

include uninterpreted constants in the syntax nonetheless since they are useful when describing

the semantics of egglog programs.

4.2 Semantics
Given an infinite set of uninterpreted constants

3 𝑁 = {𝑛1, 𝑛2, . . .} and a complete lattice 𝐿 = (𝐶, ⊑
,⊔) over domain of interpreted constants 𝐶 , We define ⊥ to be the least element of 𝐿. A schema

𝑆 is a collection of function symbols and their function signatures, where the types range over

{𝑁,𝐶}. Given a schema 𝑆 , an instance of 𝑆 is defined 𝐼 = (DB,≡), where DB is a set of function

entries 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑣 that is consistent with the schema and ≡ is an equivalence relation over

𝑁 ∪𝐶 satisfying ∀𝑐1, 𝑐2 ∈ 𝐶.𝑐1 ≡ 𝑐2 → 𝑐1 = 𝑐2 (i.e., interpreted constants are only equivalent to

themselves). For convenience, we also lift set operator (e.g., union, difference) to be between an

instance and a database, which applies the operator to instance’s database.

Given an arbitrary total order < over 𝑁 ∪𝐶 , we define the canonicalization function _≡ (𝑡) =
min 𝑡 ′ : 𝑡 ′ ≡ 𝑡 . For convenience, we lift _≡ to also work on sets and the whole database instances

by pointwise canonicalization.

Before proceeding to define the semantics of an egglog program, we need to first define what it

means for a ground atom (an atom without variables) to be in the database and what it means to

add one to the database. First, we use the judgement 𝐼 ⊢ 𝐴 to denote a ground atom is contained in

the database 𝐼 .

𝐼 ⊢ 𝑡𝑖 ↦→ 𝑣𝑖 for 𝑖 = 1 . . . 𝑘

𝐼 = (DB,≡) 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑣 ∈ DB
𝐼 ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑘 ) ↦→ 𝑣 𝐼 ⊢ 𝑣 ↦→ 𝑣

𝐼 ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑘 ) ↦→ 𝑣 for some 𝑣

𝐼 ⊢ 𝑓 (𝑡1, . . . , 𝑡𝑘 )

3
These uninterpreted constants play a similar role as e-class ids in EqSat or labelled nulls in the chase from the database

literature.
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flatten𝐼 (𝐴) = 𝑠 where (𝑣, 𝑠) = aux(𝐴)

aux(𝑓 (𝑡1, . . . , 𝑡𝑘 ) ↦→ 𝑣) =
(
𝑣, {𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑣} ∪

⋃
𝑖=1,...,𝑘

𝑠𝑖

)
where (𝑣𝑖 , 𝑠𝑖 ) = aux(𝑡𝑖 ) for 𝑖 = 1, . . . , 𝑘 .

aux(𝑓 (𝑡1, . . . , 𝑡𝑘 )) =
(
𝑣, {𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑣} ∪

⋃
𝑖=1,...,𝑘

𝑠𝑖

)
where (𝑣𝑖 , 𝑠𝑖 ) = aux(𝑡𝑖 ) for 𝑖 = 1, . . . , 𝑘

and 𝐼 ⊢ 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑣 if such 𝑣 exists and 𝑣 = default𝑓 otherwise.

aux(𝑣) = (𝑣, ∅)

Fig. 6. flatten𝐼 (𝐴) flattens function entries to be inserted into 𝐼 given a nested ground atom 𝐴. If the output
type of 𝑓 is 𝑁 , then default𝑓 is a fresh constant from 𝑁 ; otherwise it is ⊥. The auxillary function aux takes a
ground atom and returns the “output value” of the ground atom and the set of flattened facts it will populate.

We also define flatten𝐼 in Figure 6 to flatten function entries to be inserted into 𝐼 given a nested

ground atom 𝐴.

Now we can define the semantics of an egglog program. It consists of two parts: the immediate

consequence operator and the rebuilding operator. We can define the (inflationary) immediate

consequence operator 𝑇
↑
𝑃
as follows.

4
Let 𝜎 denote a substitution that maps variables to constants,

and let 𝐴[𝜎] denote the ground atom obtained by applying 𝜎 to atom 𝐴 in the standard way. Given

an egglog program 𝑃 consisting of a set of rules and 𝐼 = (DB,≡), then 𝑇 ↑
𝑃
(𝐼 ) = DB ∪ 𝑇𝑃 (𝐼 ) and

𝑇𝑃 (𝐼 ) = (DB′,≡), where

DB′ =
⋃

(𝐴 :- 𝐴1,...,𝐴𝑚) ∈𝑃

{
flatten𝐼 (𝐴[𝜎]) | ∀𝑖=1,...,𝑚 𝐼 ⊢ 𝐴𝑖 [𝜎]

}
However, functions in𝑇

↑
𝑃
(𝐼 ) may no longer preserve the functional dependencies, as it is possible

that the same key (𝑣1, . . . , 𝑣𝑘 ) are mapped to more than one 𝑣 in some 𝑓 . We call𝑇
↑
𝑃
(𝐼 ) a pre-instance,

since it is not a valid instance yet. To transform a pre-instance into a valid instance, we further

4
The definition of immediate consequence operator in standard Datalog does not union with DB, because rule applications
in standard Datalog are monotone. This is not the case in egglog in general. For example, rule𝑄 (𝑒) :- lo(𝑒) ↦→ 5, where lo
tracks the lower bound of an expression, is not monotone because the value of lo(𝑒) can increase over time. Although one

can adapt the meet semantics of Flix [Madsen et al. 2016] for relational joins to enforce monotonicity, we do not do this in

egglog to be compatible with existing egg applications, which can be non-monotonic. Instead, we define egglog semantics

using the inflationary immediate consequence operator, which is used to describe semantics for non-monotonic extension

of Datalog such as Datalog
¬
[Kolaitis and Papadimitriou 1988].
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define the rebuilding operator 𝑅((DB,≡)) = (DB𝑅,≡𝑅), where:

(≡𝑅) = equivalence closure of

©«(≡) ∪
(𝑛1, 𝑛2)

���� 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑛1 ∈ DB,
𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑛2 ∈ DB,
𝑛1, 𝑛2 ∈ 𝑁

ª®¬
DB𝑅 = _≡𝑅

({
𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ merge𝑓 ,≡ (𝐾)

���� 𝐾 = {𝑣 : 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑣 ∈ DB}
and 𝐾 is not empty

})
merge𝑓 ,≡ (𝐾) =

{
min (_≡ (𝐾)) if the output type of 𝑓 is 𝑁 ;⊔
𝐾 if the output type of 𝑓 is 𝐶 .

Note that the canonicalization in computing DB𝑅 (i.e., _≡𝑅 ) may cause 𝐼 to be invalid again, so

successive rounds of rebuilding may be needed. Therefore, the complete rebuilding function 𝑅∞ is

defined as iterative applications of 𝑅 until fixpoint. The rebuilding process always terminates, as it

shrinks the size of the database in each iteration.

We define one iteration of evaluating an egglog program 𝐹𝑃 as 𝑅∞ ◦𝑇 ↑
𝑃
, i.e., do rule application

once, and apply rebuilding until fixpoint. Intuitively, applying 𝐹𝑃 to a database makes it “larger”, in

the sense that more facts may be represented. To capture this monotonicity, we define the expanded

database 𝐸≡ (DB) such that 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑛 ∈ 𝐸≡ (DB) iff 𝑓 (_≡ (𝑣1), . . . , _≡ (𝑣𝑘 )) ↦→ _≡ (𝑛) ∈ DB
and 𝑓 (𝑣1, . . . , 𝑣𝑘 ) ↦→ 𝑐 ∈ 𝐸≡ (DB) iff ∃𝑐 ′.𝑓 (_≡ (𝑣1), . . . , _≡ (𝑣𝑘 )) ↦→ 𝑐 ′ ∈ DB ∧ 𝑐 ⊑ 𝑐 ′. A database is

larger than or equal to another database if it knows at least as many facts and equalities, so we

define (DB1,≡1) ⊑𝐼 (DB2,≡2) iff 𝐸≡1 (DB1) ⊆ 𝐸≡2 (DB2) and ≡1⊆≡2.
Although 𝐹𝑃 is not a monotone function in general, the following sequence of iterative applica-

tions is always monotonically increasing:

𝐼⊥ ⊑𝐼 𝐹𝑃 (𝐼⊥) ⊑𝐼 𝐹𝑃 (𝐹𝑃 (𝐼⊥)) ⊑𝐼 𝐹𝑃 (𝐹𝑃 (𝐹𝑃 (𝐼⊥))) ⊑𝐼 . . .

for initial database 𝐼⊥ = (∅, Id𝑁∪𝐶 ) where Id𝑁∪𝐶 is the identity relation over 𝑁 ∪𝐶 . This ensures
the existence of a fixpoint.

Finally, the result of evaluating an egglog program 𝑃 is defined as the inductive fixpoint of 𝐹𝑃 ,

i.e., [[𝑃]] = 𝐹∞
𝑃
(𝐼⊥). For many practical applications, [[𝑃]] often has an infinite size, so we only

calculate a finite under-approximation of the result, i.e., (𝑅∞ ◦𝑇 ↑
𝑃
)𝑛 (𝐼⊥) for some iteration size 𝑛.

4.3 Semi-naïve Evaluation
Last section gives an algorithm for evaluating egglog programs, which iteratively apply the

immediate consequence operator (𝑇
↑
𝑃
) and the rebuilding operator 𝑅∞. We call this algorithm

the naïve evaluation. Despite straightforward, the naïve evaluation may duplicate works by re-

discovering same facts over and over again. The semi-naïve algorithm mitigates this problem by

incrementalizing the evaluation. In semi-naïve evaluation, each iteration maintains a differential

database ΔDB𝑖 , which will only contain tuples that are updated or new in this iteration. The semi-

naïve rule application operator 𝑇 SN
𝑃
(𝐼𝑖 ,ΔDB𝑖 ) additionally takes a differential database. For each

rule𝐴 :- 𝐴1, . . . , 𝐴𝑚 ,𝑇 SN
𝑃

will expand it into𝑚 delta rules {𝐴 :- 𝐴1, . . . , 𝐴 𝑗−1,Δ𝐴 𝑗 , 𝐴 𝑗+1, . . . , 𝐴𝑚 | 𝑗 ∈
1 . . .𝑚} and apply these rules to the database similar to 𝑇𝑃 .

We prove the following theorem in the full version [Zhang et al. 2023].

Theorem 4.1. The semi-naïve evaluation of an egglog program produces the same database as the
naïve evaluation.
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Algorithm 1 The semi-naïve evaluation of an egglog program.

procedure 𝐹 SN
𝑃

(𝑃, 𝑛)

𝐼0 ← 𝐼⊥; ΔDB0 ← ∅;
for 𝑖 = 1 . . . 𝑛 do
(DB𝑖 ,≡𝑖 ) ← 𝑅∞

(
𝐼𝑖−1 ∪𝑇 SN

𝑃
(𝐼𝑖−1,ΔDB𝑖−1)

)
;

ΔDB𝑖 ← DB𝑖 − DB𝑖−1;
𝐼𝑖 ← (DB𝑖 ,≡𝑖 );

return 𝐼𝑛 ;

5 IMPLEMENTATION
egglog is implemented in approximately 4,200 lines of Rust [Rust [n.d.]]. The codebase is open-

source.
5 egglog provides both a library interface and the text format shown in Section 3. As

suggested by the previous sections, egglog’s design and implementation takes many cues from

modern Datalog implementations [Jordan et al. 2016; Sahebolamri et al. 2022; Szabó et al. 2018].

Below, we describe the design of egglog’s core components, as well as some of the benefits of this

design.

5.1 Components
egglog’s main components are the database itself, rebuilding procedure, and the query engine.

Database. Unlike most other Datalog implementations, egglog is based on a functional database

instead of a relational database. In other words, each function/relation is backed by a map instead

of a set. This ensures that egglog can efficiently perform the “get-or-default” operation required to

implement terms. For example, evaluating the term (g x) will first lookup x in the map for function

g. If something is present, it will be returned, otherwise g’s :default expression is evaluated, placed

in the map for (g x), and returned.

The functional database also ensures that a function’s inputs map to a single output. As discussed

in Section 3.2, egglog uses a function’s :merge expression to resolve conflicts in map. Function

conflicts can arise in two ways: (1) the user or a rule expressly calls (set (f x) y) where (f x) is

already defined, or (2) a union causes a function’s inputs to become equivalent. The functional

database allows for efficient detection of the first case; the second essentially requires computing

congruence closure, which is done by the rebuilding procedure.

Rebuilding Procedure. egglog’s rebuilding procedure is based on the rebuilding procedure from

egg [Willsey et al. 2021], which is in turn based on the congruence closure algorithm from Downey

et al. [1980]. The rebuilding procedure is responsible for canonicalizing the database, which resolves

(and creates) the second form of function conflicts discussed above. Suppose that a function 𝑓 maps

two different inputs to two different outputs: so 𝑓 (𝑎) ↦→ 𝑏 and 𝑓 (𝑐) ↦→ 𝑑 . Say that 𝑎 and 𝑐 have

recently been unioned, and that 𝑎 is canonical; rebuilding must update the entry 𝑓 (𝑐) ↦→ 𝑑 , since it

is no longer canonical. Canonicalizing 𝑓 (𝑐) ↦→ 𝑑 to 𝑓 (𝑎) ↦→ 𝑑 causes a conflict with the previously

existing entry 𝑓 (𝑎) ↦→ 𝑏. To resolve conflicts, egglog uses the :merge expression to combine the

two outputs into a single output. The :merge may end up unioning more things, which may in turn

create more conflicts. The rebuilding procedure continues until no more conflicts are created. For

functions where the :merge behavior is to union the two outputs, this is the same as congruence

closure. For other :merge behavior, this is more akin to the e-class analysis propagation algorithm

from Willsey et al. [2021].

5
https://github.com/mwillsey/egg-smol.
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Fig. 7. Performance of egglog and egg on math benchmark. egglogNI grows the same e-graph with less
time than egg. egglog explores a larger program space than both baselines thanks to semi-naïve evaluation.

Query Engine. Once the database is canonicalized, e-matching is reduced to a query over the

database. Since egglog is based on Datalog, it can naturally use established techniques for efficient

query execution. egglog’s query engine is based on the relational e-matching technique from

Zhang et al. [2022], which uses a worst-case optimal join algorithm called Generic Join [Ngo

et al. 2018]. egglog also features some important optimizations on top of Zhang et al. [2022]’s

implementation that are only possible because of egglog’s database-native approach6, such as the

semi-naïve evaluation presented in Section 4.3

5.2 Language-based Design
Like most Datalog implementations (and unlike most EqSat implementations), egglog is designed

primarily as a programming language. Users can write egglog programs in a text format (shown

in Section 3), and the tool parses, typechecks, compiles, and executes them. The egglog language

includes several base types (including 64-bit integers and strings) and operations over them. Users

can also define their own types and operations by using the Rust library interface.

Compared to tools like egg that are more embedded in the host language, this design provides

more of the user’s program to the compiler for checking and optimization. For example, egg
provides conditional rewrite rules that gate a rewrite on some condition. The guards are essentially

Rust code, so egg cannot inspect them; it must just run the query and then check the guard. In

egglog, there is no need for special conditional rewrites; all rules (and therefore rewrites) can have

as many conditions in the query as needed. In addition, rewrite rules in egg are not typechecked;

egglog prevents common errors by statically typechecking rules. The language-based approach

also allows the user to better model their problem with as many datatypes, functions, and analysis

as needed. egg is artificially limited to a single type and a single analysis in the e-graph due to its

embedded nature; allowing for multiplicity would significantly complicate the generic types in

egg’s Rust implementation.

5.3 Micro-benchmarks
In this section, we evaluate the performance of egglog on a typical workload of equality saturation.

Our two baselines are egg, a state-of-the-art equality saturation framework, and egglogNI, the

6
Zhang et al. [2022]’s implementation still uses an e-graph data structure; it creates a database from the e-graph whenever

it needs to e-match. egglog avoids this copying overhead since it is already a database.
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non-incremental variant of egglog with semi-naïve evaluation disabled. We populate all three

systems with a set of initial terms from egg’s math test suite and grow the e-graph with rewrite

rules using BackOff scheduler, the default scheduler of egg. We only use a subset of rules from math
test suite that does not involve any analysis (so rules that require analyses like 𝑥/𝑥 → 1 if 𝑥 ≠ 0

are removed), because the scheduler behaves differently on analyses in the two systems
7
. As a

result, egglogNI and egg produce the same e-graph in each iteration.

We ran each system for 100 iterations.
8
For each iteration, we ran three systems seven times

and report the median time versus sizes of math e-nodes (tuples for egglog systems). The result is

shown in Figure 7. Thanks to the efficient relational matching algorithm and the relational query

optimizer, egglogNI grows the exact same e-graph in less time than egg, yielding a 3.34× speedup

at the end of iteration 100. Moreover, egglog grows a slightly larger e-graph than egg with a 9.27×
speedup, because its semi-naïve evaluation avoids redundant matches.

6 CASE STUDIES
6.1 Unification-Based Points-to Analysis
Many program analysis tools [Balatsouras and Smaragdakis 2016; Bravenboer and Smaragdakis

2009; Whaley et al. 2005] are implemented in Datalog. The declarative nature of Datalog makes

the development easier, and the mature relational query optimization and execution techniques

provide competitive performance and sometimes lead to order-of-magnitude speedup [Bravenboer

and Smaragdakis 2009].

Points-to analysis computes an over-approximation of the set of possible allocations a pointer

can point to at run time. Most points-to analyses implemented in Datalog are subset based (i.e.,

Andersen style). These analyses are precise, but they scale poorly due to its quadratic complexity.

On the other hand, unification-based points-to analysis (i.e., Steensgaard style [Steensgaard 1996])

is nearly linear in complexity and therefore scales much better, at the cost of potential imprecision.

In a unification-based analysis, if it is ever learned that 𝑝 may point to two allocations 𝑎1 and 𝑎2, the

allocations are unified and considered equivalent. The points-to relation in a Steensgaard analysis

is essentially a function from pointers to the equivalence class of allocations they point to. This is

less precise than subset-based analysis, but it is more scalable, because it avoids tracking every

individual allocation a pointer points to.

However, despite its success in hosting other program analysis algorithms, classical Datalog

fails to express Steensgaard analysis efficiently due to the lack of support for fast equivalence. A

plain representation of the equivalence relation in Datalog is quadratic in space, which defeats the

purpose of unifying points-to allocations of a pointer. Recently, Soufflé added support for union-

find–backed relations to benefit from the space- and time-efficient representation in the union-find

data structure [Nappa et al. 2019]. Relations marked with the eqrel keyword in Soufflé will be

stored using union-find, so the equivalence closure property of the relation will be automatically

maintained, without explicit rules like transitivity, which is quadratic. However, eqrel relations in

Soufflé only maintain equivalence relations efficiently, but fail to interact with the rest of the rules

efficiently. Therefore, practical Steensgaard analyses do not use the equivalence relation directly.

Consider this rule
9
adapted from the Steensgaard analysis benchmark in the eqrel paper [Nappa

et al. 2019]:

7egglog does not distinguish analyses rules from other rules, while egg treats e-class analyses specially and runs them to

saturation in each iteration.

8
All experiments in this paper are executed on a MacBook Pro with Apple M2 processor and 16GB memory.

9
In contrast to our paper, Nappa et al. [2019] views vpt itself as an eqrel relation, and the body of the rule joins over only

store, vpt, load. Our presentation here is adjusted to be consistent with cclyzer++.
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// *x = y; p = *q; x and q points to the same set of allocs

eql(yAlloc, pAlloc) :- store(x, y), vpt(x, xAlloc), vpt(y, yAlloc),

load(p, q), vpt(p, pAlloc), vpt(q, qAlloc),

eql(xAlloc, qAlloc),

where vpt is the points-to relation from pointers to allocations, and eql is the equivalence re-

lation declared with eqrel. To see the performance of this rule, let us consider the subquery

vpt(x, xAlloc), vpt(q, qAlloc), eql(xAlloc, qAlloc). To evaluate this subquery, Soufflé has to join

over the eql relation, even when it is known that xAlloc and qAlloc are equivalent. We call this

additional join over the equivalence relation “join modulo equivalence”. This occurs frequently

when using equivalence relations in practice and often leads to unacceptable performance. egglog
eliminates this join modulo equivalence by actively canonicalizing each element to its canonical

representation. Because two elements are equivalent if and only if they have the same canonical

representation, it suffices for egglog to perform only an equality join over vpt(x, xAlloc) and

vpt(q, qAlloc) with qAlloc = xAlloc, without joining with an auxillary quadratic relation.

cclyzer++ [Barrett and Moore 2013] implements Steensgaard analyses in Datalog with exten-

sions, Soufflé in particular. Joins like the above are too expensive for cclyzer++, so cclyzer++
avoids such joins modulo equivalence as much as possible. In fact, profiling shows that the only

rule that involves join modulo equivalence in cclyzer++ is an order of magnitude slower than any

other rule cclyzer++ uses to compute the points-to analysis.

In Steensgaard analyses, all allocations pointed to by the same pointer should be unified, so only

one allocation per pointer will need to be tracked, which ensures an almost linear performance.

However, this key performance benefit is lost in a direct encoding of Steensgaard analyses in

Datalog. For each pair of pointer p and the allocation it points to, a direct encoding will create a

tuple vpt(p, alloc), so vpt may contain many allocations pointed to by the same pointer, despite

them all being equivalent. The many allocations pointed to by the same pointer will be further

propagated to other pointers, causing a blow up in the points-to relation. To make sure only one

representative per equivalence class will be propagated, cclyzer++ uses a complex encoding with

choice domain [Hu et al. 2021; Krishnamurthy and Naqvi 1988] and customize its own version of

equivalence relation using subsumptive rules [Köstler et al. 1995].

Qualitatively, we argue such an encoding is complex and error-prone, and we identify two

independent bugs related to the cclyzer++ encoding. Each bug could lead to unsound points-to

analysis result. To fix the bugs, we have to bring back the eqrel relations of Soufflé. In other words,

our patched version involves the interaction among choice domain, subsumptive rules, and eqrel
relations, three of the newest features of Soufflé. In our experience, the interplay of these features

can produce unexpected results and is extremely tricky to debug.

Compared to the sophisticated and unintuitive encoding one has to develop to express efficient

Steensgaard analyses in Datalog, writing Steensgaard analyses in egglog is straightforward. The
user only needs to specify that the vpt relation is a function where functional dependency repair is

done via unifying the violating ids, and egglog takes care of all the unification and canonicalization.

Our insight herewith egglog is that, if two terms are known to be equivalent, they should considered

indistinguishable by the database. egglog’s canonicalization means we do not have to join modulo

equivalence; a regular join suffices.

Benchmarking Points-To Analysis. We benchmark the performance of egglog on points-to analy-

ses against three baselines:

• eqrel uses an explicit eqrel relation to represent the equivalences among allocations. In

eqrel, because there is no canonical representation of pointers, a pointer may point to

multiple (equivalent) allocations in vpt.
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Fig. 8. Performance comparison between egglog and various encoding of Steensgaard analyses in Soufflé.
Benchmarks that time out are not shown. In particular, eqrel times out on all but one benchmarks and
cclyzer++ times out on the three benchmarks on the right.

• cclyzer++ uses the original encoding cclyzer++ developed for Steensgaard analyses. It

uses a custom equivalence relation that keeps record of the canonical representation of an

allocation and avoids duplicated allocations with Soufflé’s choice domain feature. However,

cclyzer++ has to perform joins modulo equivalence for analyzing the load instruction, and

the custom equivalence relation is semantically unsound.

• patched is a patched encoding we developed based on cclyzer++’s encoding. We made the

custom equivalence relation sound by bringing back the eqrel relation in Soufflé, while

keeping the canonical representations of allocations. We also added an additional rule to

address a congruence-related bug in cclyzer++.

Moreover, we compare against egglogNI, the non-incremental variant of egglog with semi-naïve

disabled.

We reimplemented a subset of cclyzer++ in egglog and three baselines. The points-to analyses

we implement is context-, flow-, path-insensitive and field-sensitive. We ran points-to analyses

written in two variants of egglog and the three baselines on programs from postgresql-9.5.2 with

a timeout of 20 seconds. All the systems except for cclyzer++ report the same size for computed

points-to relations. Figure 8 shows the result. eqrel times out on all but one of the benchmarks,

and the patch to cclyzer++, despite making it sound, does make the encoding slower with the

explicit equivalence relation and times out on three of the benchmarks. egglog is faster than all

Soufflé based baselines. The comparison between egglog and egglogNI additionally shows that

semi-naïve evaluation brings a substantial amount of speedup to the computation of points-to

analyses by avoiding duplicated works. Not counting the timed-out benchmarks, egglog achieves

a 4.96× speedup over patched on average, which is the fastest sound encoding in Soufflé available.

Moreover, it achieves a 1.94× speedup over cclyzer++, and 1.59× over egglogNI.
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𝑎 ∗ 𝑏
𝑐

=⇒ 𝑎
𝑐
𝑏

(a) A fraction rule which requires 𝑏 ≠ 0.

𝑥 − 𝑦 =⇒ 𝑥3 − 𝑦3
𝑥2 + 𝑥𝑦 + 𝑦2

(b) A more complex rule derived from the
factorization of 𝑥3−𝑦3 = (𝑥−𝑦) (𝑥2+𝑥𝑦+𝑦2).
This is sound if either 𝑥 ≠ 0 or 𝑦 ≠ 0.

Fig. 9. Herbie [Panchekha et al. 2015] uses
rewrite rules to create program variants
with less floating-point error from phenom-
ena like cancellation. Some rules are only
sound under certain conditions.

(function lo (Math) Rational :merge (max old new))

(function hi (Math) Rational :merge (min old new))

(rule ((= e (Sqrt a)))

((set (lo e) (rational 0 0))))

(rule ((= e (Sqrt a))

(= loa (lo a)))

((set (lo e) (sqrt loa))))

Fig. 10. A few example rules for interval analysis of sqrt
in egglog. The 𝑙𝑜 relation tracks the lower bound for each
term, and we merge lower bounds by taking the max. Simi-
larly, the ℎ𝑖 relation tracks the upper bound. First, we know
that root of anything is non-negative. Next, since taking the
root is monotonic, we can propagate the bounds from the
arguments directly to the bounds of the result.

6.2 Herbie: Making an EqSat Application Sound
Herbie [Panchekha et al. 2015] is a widely-used, open-source tool for making floating-point pro-

grams more accurate, with thousands of users and yearly stable releases. Herbie takes as input

a real expression, and returns the most accurate floating-point implementation it can synthesize.

Since floating-point error is a critical issue in scientific computing, Herbie is used in a variety of

domains, including machine learning, computer graphics, and computational biology.

The core of Herbie’s algorithm is to run equality saturation to explore equivalent programs.

These programs are mathematically equivalent over the real numbers, but may have different

behavior over floating-point numbers. Herbie considers candidate programs from the results of

equality saturation, finding the most accurate among them.

Herbie’s rewrite rules are known to be unsound, which has been the cause of numerous bugs

in the past. In addition, unsound rules prevent Herbie from running equality saturation longer

once unsoundness occurs. Unfortunately, merely removing the unsound rules makes Herbie useless

on a large portion of its benchmark suite. For example, Figure 9b shows a rewrite rule which is

critical to Herbie’s ability to find more accurate programs. Using these unsound rules in a sound

way requires a more sophisticated analysis of Herbie’s input programs. This analysis was nearly

impossible with Herbie’s existing e-graph implementation.

egglog has allowed us to implement precise analyses to make all rewrites sound. First, we

implement an interval analysis in egglog, allowing rules to utilize information about the range of

terms in the program (Figure 10). This unlocks a range of crucial rules involving division, including

the rule shown in Figure 9a.

While the interval analysis enables many of Herbie’s rules, it is not sufficient for some more

difficult cases. We additionally implemented a “not equals to” analysis, which leverages both the

interval analysis as well as facts inferred during rewriting. egglog’s support for multiple interacting

analyses enables cleanly separating interval and ≠ rules; in other EqSat frameworks they would be

implemented as a fused, monolithic analysis requiring much significantly more complicated rules.

The not-equals analysis allows Herbie to soundly solve one of its classic cancellation benchmarks:

3

√
𝑣 + 1 − 3

√
𝑣 . First, the interval analysis proves that 𝑣 + 1 ≠ 𝑣 . Next, the rule 𝑎 ≠ 𝑏 =⇒

√
𝑎 ≠
√
𝑏
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Fig. 11. Graph showing the difference in error between Herbie using egglog’s sound analysis and Herbie
using the unsound ruleset across all of Herbie’s benchmark suite. The horizontal axis is the difference in the
average bits of error using Herbie’s unsound rules vs. egglog’s sound rules. The vertical axis is the number of
benchmarks. Negative values represent benchmarks in which Herbie found a more accurate program using
egglog’s analysis.
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Fig. 12. Graph showing the difference in runtime (in seconds) between Herbie using egglog’s sound analysis
and Herbie using the unsound ruleset across all of Herbie’s benchmark suite. The horizontal axis is the
difference in time to execute the benchmark. The vertical axis is the number of benchmarks. Negative values
represent benchmarks in which Herbie was faster using egglog’s analysis.

implies
3

√
𝑣 + 1 ≠ 3

√
𝑣 . This allows us to finally apply the rewrite from Figure 9b, substituting

3

√
𝑣 + 1

for 𝑥 and
3

√
𝑣 for 𝑦, reducing the error of the expression from extremely high to near zero.

Figure 11 shows the results of our evaluation of Herbie using egglog. Herbie has a benchmark

suite of 289 floating-point programs, collected from a variety of domains. We ran Herbie on each

of these programs using both the unsound ruleset and egglog’s sound analysis. Using egglog’s
analysis makes Herbie faster overall (73.91 minutes vs 81.91 minutes). This is because egglog
generates no unsound programs, which slow down Herbie’s search.

In 104 cases, Herbie using a sound analysis is actually able to find a more accurate program

than Herbie using the unsound ruleset. In 135 cases, Herbie’s unsound ruleset finds more accurate

results than egglog’s sound analysis. There are several outliers in Figure 11. The point on the far
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left represents a benchmark which Herbie using the unsound ruleset is unable to solve. This input

program is 9𝑥4 − 𝑦2 (𝑦2 − 2), and the solution involves an algebraic rearrangement and fma (fused

multiply-add) operation. The point on the far right represents a program that overflows egglog’s
rational type, which can be easily fixed in the future.

7 RELATEDWORK
E-graphs and Equality Saturation. E-graphs were first introduced by Nelson [1980] in late 1970s

to support a decision procedure for the theory of equalities. Downey et al. [1980] later introduced a

more efficient algorithm and analyzed the its time complexity. E-graphs are used at the core of many

theorem provers and solvers [Barrett et al. 2011; De Moura and Bjørner 2008; Detlefs et al. 2005].

Because e-graphs can compactly represent program spaces, they were repurposed for program

optimization in the 2000s [Joshi et al. 2002; Tate et al. 2009]. Other data structures for compact

program space representations are developed in parallel, including finite tree automata [Wang et al.

2017a,b] and version space algebras [Polozov and Gulwani 2015; Wolfman et al. 2001]. There are

two essential problems to these data structures: how to construct the desired program space and

how to search it. Tate et al. [2009] observed that the program space can be grown via equational,

non-destructive rewrites, which they called equality saturation. This insight leads to a line of work

on using equality saturation for program optimization and program synthesis [Nandi et al. 2020,

2021; Panchekha et al. 2015; VanHattum et al. 2021; Wang et al. 2020; Yang et al. 2021]. However, a

problem with this rewriting-based approach to program space construction is that, in many cases,

sound rewrite rules are difficult to define in a purely syntactic way. The egg framework by Willsey

et al. [2021] mitigates this issue by introducing e-class analyses, which allow simple semantic

analyses over the e-graphs. Our work improves e-class analyses by allowing more expressive

analysis rules to be defined compositionally.

Zhang et al. [2022] first studied the connection between e-graphs and relational databases. By

reducing pattern matching over e-graphs to relational queries, they made the matching procedure

orders of magnitude faster. However, their technique has the dual representation problem, i.e., one

has to keep both the e-graph and its relational representation, which limits its practical adoptions.

We build on their work and view the entire equality saturation algorithm from the relational

perspective. This saves us from synchronizing two representations of e-graphs and further exploits

the performance benefits of the relational approach.

egglog also brings new insights on some problems in e-graphs and equality saturation. For

example, the literature studied the problem of incremental pattern matching over e-graphs. Zhang

et al. [2022] conjectured that this problem can be solved by classical techniques of incremental

view maintenance in databases. We complement their argument with a concrete implementation of

incremental matching using semi-naïve evaluation [Balbin and Ramamohanarao 1987]. Moreover,

the literature studied the “proof” problem on e-graphs [Flatt et al. 2022; Nieuwenhuis and Oliveras

2005]: many domains require not only the optimized terms that are equivalent to the original terms,

but also a proof why they are equivalent. A future direction is to study proof generations for

egglog programs.

Datalog and Relational Databases. Functional dependency repairs via lattice joins in egglog is
directly inspired by Flix [Madsen et al. 2016]. Flix extends Datalog by allowing relations to be

optionally annotated by lattices. With this feature, Flix is able to express many advanced program

analyses algorithms efficiently. egglog can simulate Flix programs by setting :merge to the lattice

join operator. Flix can be regarded as among the works that try to find a theoretical foundation for

recursive aggregates [Abo Khamis et al. 2022; Köstler et al. 1995; Ross and Sagiv 1992; Van Gelder

1992]. A similar lattice-based approach to recursive aggregates is studied by Bloom
𝐿
[Conway et al.
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2012]. Other Datalog systems that support recursive aggregates include LogicBlox [Aref et al. 2015]

and Rel [developers [n.d.]].

Rewrite rules in egglog generalize rules in Datalog because the heads of rules can generate fresh

ids. This is called tuple-generating dependencies (TGDs) in the database literature. Moreover, while

functional dependencies has the form 𝑅(𝑥1, . . . , 𝑥𝑖 , . . . , 𝑥𝑘 ), 𝑅(𝑥1, . . . , 𝑥 ′𝑖 , . . . 𝑥𝑘 ) → 𝑥𝑖 = 𝑥
′
𝑖 equality-

generating dependencies (EGDs) generalize functional dependencies by allowing equalities between

different columns in different relations. A family of algorithms called the chase can be used to

reason about both TGDs and EGDs [Benedikt et al. 2017; Deutsch et al. 2008]. Moreover, the model

semantics of the chase directly gives a model semantics of a subset of egglog where union is the

only :merge operation. Compared to general TGDs and EGDs, egglog imposes syntactic constraints

over the programs so that rules applications are deterministic and efficient. Datalog
±
[Calì et al.

2009] is a family of extensions to Datalog based on TGDs and EGDs for ontological reasoning.

Concurrent to our work and independent to the work on the chase, Bidlingmaier [2023a] formal-

izes Datalog with equality, which shares the same core idea to egglog, as relational Horn logic and

partial Horn logic and studies its properties from a categorical point of view. Bidlingmaier [2023b]

further describes an evaluation algorithm for Datalog with equality similar to the chase. Different

from theirs, our work is motivated by practical applications in program optimization and program

analysis, and we focus on a simpler operational model of egglog.
While termination for Datalog with a variety of extensions is well studied, the termination

condition of egglog is quite open. In the future, we hope to better understand the termination

of egglog by further studying the connection between egglog and the chase. For example, the

database theory community has establishedmany conditions for chase termination (e.g., Bellomarini

et al. [2018]; Calì et al. [2009]; Fagin et al. [2003]), and one could potentially apply these results to

egglog by translating egglog rewrite rules and functional dependencies into TGDs and EGDs. On

the other hand, nearly all instantiations of equality saturation in practice will diverge . Being a

generalization of equality saturation, egglog allows for divergence by design.

A key feature of egglog is its efficient equational reasoning. Although equational reasoning

can be expressed in Datalog with an explicit equivalence relation, doing so is very inefficient. The

patched baseline in Section 6.1 is a slightly more efficient encoding of equational reasoning in

Datalog using Soufflé extensions including choice domain and subsumptive rules. We also attempted

several other approaches to optimize equational reasoning with existing features such as recursive

aggregates and Constraint Handling Rule’s simpagation rules [Frühwirth 1998]. However, we found

none of these encodings provide a natural abstraction nor competent performance.

Logic Programming and Automated Theorem Proving. egglog bears some similarity with logic

programming languages like Prolog. Similar to unification variables in Prolog, fresh ids in egglog
can represent unknown information (see, e.g., Zhang et al. [2023, Appendix A.1]), and the con-

gruence closure can be viewed as a dual procedure to unification [Kanellakis and Revesz 1989].

In Zhang et al. [2023, Appendix A.3], we also show an implementation of a Hindley-Milner type

inference algorithm, of which the key construct is the unification mechanism implemented as a

few egglog rules.
However, several distinguishing features make egglog highly efficient for its target domains,

namely program analysis and optimization. For example, egglog does not allow backtracking, so its

union-find data structure does not need to be backtrackable or persistent (unlike in Prolog or SMT

solvers), which makes it efficient for tasks that are monotone in nature (e.g., equality saturation and

pointer analysis). Moreover, egglog uses a bottom-up evaluation algorithm more similar to Datalog

than Prolog (top-down backtracking search). One way of (partially) viewing egglog is as a logic
programming language that combines the bottom-up evaluation of Datalog and the unification
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mechanism of Prolog. The “magic-set transformation” is a closely related technique to simulate

top-down evaluation in a bottom-up language in a demand-driven fashion. We show in the full

version [Zhang et al. 2023] several pearls that uses this idea to simulate top-down evaluations. On

the other hand, Prolog has imperative features such as cut, which removes choice points. egglog
does not have a direct analog of cut (because egglog does not backtrack), although egglog has
other imperative features borrowed from EqSat techniques that makes fine control of the execution

such as rule scheduling.

SMT solvers are powerful tools for deciding combinations of logic theories and automatically

proving theorems [Barrett et al. 2011; De Moura and Bjørner 2008]. Many rewrite rules in egglog
can be expressed as SMT axioms. In fact, SMT solvers support a richer language than egglog with

features like disjunction and built-in theories like the theory of integer programming. However,

a key difference between egglog and SMT solvers is that the output of egglog is minimal (or
universal in database terminology). While it is possible to “hack into” an SMT solver to repurpose it

as an EqSat engine [Flatt et al. 2022], such techniques are arcane and not officially supported. EqSat

and egglog’s native support for extraction makes them better suited for program optimization.

Recently, researchers have extended Datalog to dispatch more complex constraints to be solved

by an SMT solver [Bembenek et al. 2020]. This greatly extends the reach of Datalog, allowing the

user to specify constraints in a variety of theories and logics. In egglog we emphasize efficiency,

and chose more conservative extensions that can be implemented by fast data structures like

union-find.

8 CONCLUSION
egglog unifies both Datalog and EqSat style fixpoint reasoning. From the perspective of a Datalog

programmer, egglog adds fast and extensible equivalence relations that still support key database

optimizations like query planning and semi-naive evaluation. From the perspective of an EqSat user,

egglog adds composable analyses, extensible uninterpreted functions, and incremental e-matching,

thus significantly simplifying complex conditional rewrites and scalable program analyses. egglog’s
novel merge expressions for user-specified functional dependency repair are the key technical

mechanism enabling this synthesis of fixpoint reasoning capabilities.

ACKNOWLEDGMENTS
We thank the anonymous reviewers for their thoughtful feedback. We are grateful to Martin

Bidlingmaier for sharing his insights on EqLog, a concurrent work to egglog, to Martin Bravenboer

for discussions on the Rel programming language, to ScottMoore and Langston Barret for answering

questions about cclyzer++, and to friends at the UW PLSE group for their feedback on the early

draft. This material is based upon work supported by the National Science Foundation under Grant

No. 1749570, by the U.S. Department of Energy under Award Number DE-SC0022081, by DARPA

under contract FA8650-20-2-7008, and by the Applications Driving Architectures (ADA) Research

Center, a JUMP Center co-sponsored by SRC and DARPA.

REFERENCES
Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of Databases. Addison-Wesley. http://webdam.inria.fr/

Alice/

Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and Yisu Remy Wang. 2022. Convergence of Datalog

over (Pre-) Semirings. In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (Philadelphia, PA, USA) (PODS ’22). Association for Computing Machinery, New York, NY, USA, 105–117.

https://doi.org/10.1145/3517804.3524140

Molham Aref, Balder ten Cate, Todd J. Green, Benny Kimelfeld, Dan Olteanu, Emir Pasalic, Todd L. Veldhuizen, and

Geoffrey Washburn. 2015. Design and Implementation of the LogicBlox System. In Proceedings of the 2015 ACM

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 125. Publication date: June 2023.

http://webdam.inria.fr/Alice/
http://webdam.inria.fr/Alice/
https://doi.org/10.1145/3517804.3524140


Better Together: Unifying Datalog and Equality Saturation 125:23

SIGMOD International Conference on Management of Data (Melbourne, Victoria, Australia) (SIGMOD ’15). Association for

Computing Machinery, New York, NY, USA, 1371–1382. https://doi.org/10.1145/2723372.2742796

George Balatsouras and Yannis Smaragdakis. 2016. Structure-Sensitive Points-To Analysis for C and C++. In Static Analysis
- 23rd International Symposium, SAS 2016, Edinburgh, UK, September 8-10, 2016, Proceedings (Lecture Notes in Computer
Science, Vol. 9837), Xavier Rival (Ed.). Springer, 84–104. https://doi.org/10.1007/978-3-662-53413-7_5

Isaac Balbin and Kotagiri Ramamohanarao. 1987. A Generalization of the Differential Approach to Recursive Query

Evaluation. J. Log. Program. 4, 3 (sep 1987), 259–262. https://doi.org/10.1016/0743-1066(87)90004-5

Clark Barrett, Christopher L. Conway, Morgan Deters, Liana Hadarean, Dejan Jovanović, Tim King, Andrew Reynolds, and

Cesare Tinelli. 2011. CVC4. In Proceedings of the 23rd International Conference on Computer Aided Verification (Snowbird,

UT) (CAV’11). Springer-Verlag, Berlin, Heidelberg, 171–177.
Langston Barrett and Scott Moore. 2013. cclyzer++. https://github.com/GaloisInc/cclyzerpp.

Luigi Bellomarini, Emanuel Sallinger, and Georg Gottlob. 2018. The Vadalog System: Datalog-Based Reasoning for Knowledge

Graphs. Proc. VLDB Endow. 11, 9 (may 2018), 975–987. https://doi.org/10.14778/3213880.3213888

Aaron Bembenek, Michael Greenberg, and Stephen Chong. 2020. Formulog: Datalog for SMT-based static analysis. Proc.
ACM Program. Lang. 4, OOPSLA (2020), 141:1–141:31. https://doi.org/10.1145/3428209

Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris Motik, Paolo Papotti, Donatello Santoro, and Efthymia

Tsamoura. 2017. Benchmarking the Chase. In Proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems (Chicago, Illinois, USA) (PODS ’17). Association for Computing Machinery, New York, NY,

USA, 37–52. https://doi.org/10.1145/3034786.3034796

Martin E. Bidlingmaier. 2023a. Algebraic Semantics of Datalog with Equality. arXiv:2302.03167 [cs.LO]

Martin E. Bidlingmaier. 2023b. An Evaluation Algorithm for Datalog with Equality. arXiv:2302.05792 [cs.PL]

Martin Bravenboer and Yannis Smaragdakis. 2009. Strictly Declarative Specification of Sophisticated Points-to Analyses. In

Proceedings of the 24th ACM SIGPLAN Conference on Object Oriented Programming Systems Languages and Applications
(Orlando, Florida, USA) (OOPSLA ’09). Association for Computing Machinery, New York, NY, USA, 243–262. https:

//doi.org/10.1145/1640089.1640108

Andrea Calì, Georg Gottlob, and Thomas Lukasiewicz. 2009. A General Datalog-Based Framework for Tractable Query

Answering over Ontologies. In Proceedings of the Twenty-Eighth ACM SIGMOD-SIGACT-SIGART Symposium on Principles
of Database Systems (Providence, Rhode Island, USA) (PODS ’09). Association for Computing Machinery, New York, NY,

USA, 77–86. https://doi.org/10.1145/1559795.1559809

Alessandro Cheli. 2021. Metatheory.jl: Fast and Elegant Algebraic Computation in Julia with Extensible Equality Saturation.

Journal of Open Source Software 6, 59 (2021), 3078. https://doi.org/10.21105/joss.03078

Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein, and David Maier. 2012. Logic and lattices for

distributed programming. In ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA, October 14-17, 2012. 1.
https://doi.org/10.1145/2391229.2391230

Leonardo de Moura and Nikolaj Bjørner. 2007. Efficient E-Matching for SMT Solvers. In Automated Deduction – CADE-21,
Frank Pfenning (Ed.). Springer Berlin Heidelberg, Berlin, Heidelberg, 183–198.

Leonardo De Moura and Nikolaj Bjørner. 2008. Z3: An Efficient SMT Solver. In Proceedings of the Theory and Practice of
Software, 14th International Conference on Tools and Algorithms for the Construction and Analysis of Systems (Budapest,
Hungary) (TACAS’08/ETAPS’08). Springer-Verlag, Berlin, Heidelberg, 337–340. http://dl.acm.org/citation.cfm?id=1792734.

1792766

David Detlefs, Greg Nelson, and James B. Saxe. 2005. Simplify: A Theorem Prover for Program Checking. J. ACM 52, 3

(May 2005), 365–473. https://doi.org/10.1145/1066100.1066102

Alin Deutsch, Alan Nash, and Jeff Remmel. 2008. The Chase Revisited. In Proceedings of the Twenty-Seventh ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (Vancouver, Canada) (PODS ’08). Association for Computing

Machinery, New York, NY, USA, 149–158. https://doi.org/10.1145/1376916.1376938

Rel developers. [n.d.]. Rel reference. https://docs.relational.ai/rel/ref/overview

Soufflé Developers. [n.d.]. Soufflé Algebraic Data Types. https://souffle-lang.github.io/types#algebraic-data-types-adt.

Accessed: 2022-11-01.

Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. 1980. Variations on the Common Subexpression Problem. J. ACM 27,

4 (1 Oct. 1980), 758–771. https://doi.org/10.1145/322217.322228

Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. 2003. Data Exchange: Semantics and Query Answering.

In Database Theory — ICDT 2003, Diego Calvanese, Maurizio Lenzerini, and Rajeev Motwani (Eds.). Springer Berlin

Heidelberg, Berlin, Heidelberg, 207–224.

Oliver Flatt, Samuel Coward, Max Willsey, Zachary Tatlock, and Pavel Panchekha. 2022. Small Proofs from Congruence

Closure. In Proceedings of The 22nd Conference on Formal Methods in Computer-Aided Design (FMCAD ’22), Vol. 3. TU
Wien Academic Press, 75. https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 125. Publication date: June 2023.

https://doi.org/10.1145/2723372.2742796
https://doi.org/10.1007/978-3-662-53413-7_5
https://doi.org/10.1016/0743-1066(87)90004-5
https://github.com/GaloisInc/cclyzerpp
https://doi.org/10.14778/3213880.3213888
https://doi.org/10.1145/3428209
https://doi.org/10.1145/3034786.3034796
https://arxiv.org/abs/2302.03167
https://arxiv.org/abs/2302.05792
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1640089.1640108
https://doi.org/10.1145/1559795.1559809
https://doi.org/10.21105/joss.03078
https://doi.org/10.1145/2391229.2391230
http://dl.acm.org/citation.cfm?id=1792734.1792766
http://dl.acm.org/citation.cfm?id=1792734.1792766
https://doi.org/10.1145/1066100.1066102
https://doi.org/10.1145/1376916.1376938
https://docs.relational.ai/rel/ref/overview
https://souffle-lang.github.io/types#algebraic-data-types-adt
https://doi.org/10.1145/322217.322228
https://doi.org/10.34727/2022/isbn.978-3-85448-053-2_13


125:24 Y. Zhang, Y. R. Wang, O. Flatt, D. Cao, P. Zucker, E. Rosenthal, Z. Tatlock, and M. Willsey

Thom Frühwirth. 1998. Theory and practice of constraint handling rules. The Journal of Logic Programming 37, 1 (1998),

95–138. https://doi.org/10.1016/S0743-1066(98)10005-5

Xiaowen Hu, Joshua Karp, David Zhao, Abdul Zreika, Xi Wu, and Bernhard Scholz. 2021. The Choice Construct in the

Soufflé Language. In Programming Languages and Systems: 19th Asian Symposium, APLAS 2021, Chicago, IL, USA, October
17–18, 2021, Proceedings (Chicago, IL, USA). Springer-Verlag, Berlin, Heidelberg, 163–181. https://doi.org/10.1007/978-3-

030-89051-3_10

Herbert Jordan, Bernhard Scholz, and Pavle Subotić. 2016. Soufflé: On synthesis of program analyzers. In International
Conference on Computer Aided Verification. Springer, 422–430.

Rajeev Joshi, Greg Nelson, and Keith Randall. 2002. Denali: A Goal-directed Superoptimizer. SIGPLAN Not. 37, 5 (May 2002),

304–314. https://doi.org/10.1145/543552.512566

Paris C. Kanellakis and Peter Z. Revesz. 1989. On the relationship of congruence closureand unification. Journal of Symbolic
Computation 7, 3 (1989), 427–444. https://doi.org/10.1016/S0747-7171(89)80018-5 Unification: Part 1.

Phokion G. Kolaitis and Christos H. Papadimitriou. 1988. Why Not Negation by Fixpoint?. In Proceedings of the Seventh ACM
SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (Austin, Texas, USA) (PODS ’88). Association for

Computing Machinery, New York, NY, USA, 231–239. https://doi.org/10.1145/308386.308446

Gerhard Köstler, Werner Kiessling, Helmut Thöne, and Ulrich Güntzer. 1995. Fixpoint Iteration with Subsumption in

Deductive Databases. J. Intell. Inf. Syst. 4, 2 (mar 1995), 123–148. https://doi.org/10.1007/BF00961871

Ravi Krishnamurthy and Shamim A. Naqvi. 1988. Non-Deterministic Choice in Datalog. In JCDKB.
Chris Lattner and Vikram Adve. 2004. LLVM: a compilation framework for lifelong program analysis & transformation. In

International Symposium on Code Generation and Optimization, 2004. CGO 2004. 75–86. https://doi.org/10.1109/CGO.

2004.1281665

Magnus Madsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. From Datalog to Flix: A Declarative Language for Fixed Points on

Lattices. SIGPLAN Not. 51, 6 (jun 2016), 194–208. https://doi.org/10.1145/2980983.2908096

Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva Darulova, Dan Grossman, and Zachary Tatlock.

2020. Synthesizing Structured CAD Models with Equality Saturation and Inverse Transformations. In Proceedings of
the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (London, UK) (PLDI 2020).
Association for Computing Machinery, New York, NY, USA, 31–44. https://doi.org/10.1145/3385412.3386012

Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu RemyWang, Brett Saiki, Adam Anderson, Adriana Schulz, Dan Grossman,

and Zachary Tatlock. 2021. Rewrite Rule Inference Using Equality Saturation. Proc. ACM Program. Lang. 5, OOPSLA,
Article 119 (oct 2021), 28 pages. https://doi.org/10.1145/3485496

Patrick Nappa, David Zhao, Pavle Subotić, and Bernhard Scholz. 2019. Fast Parallel Equivalence Relations in a Datalog

Compiler. In 2019 28th International Conference on Parallel Architectures and Compilation Techniques (PACT). 82–96.
https://doi.org/10.1109/PACT.2019.00015

Charles Gregory Nelson. 1980. Techniques for Program Verification. Ph.D. Dissertation. Stanford University, Stanford, CA,

USA. AAI8011683.

Hung Q Ngo, Ely Porat, Christopher Ré, and Atri Rudra. 2018. Worst-case optimal join algorithms. Journal of the ACM
(JACM) 65, 3 (2018), 1–40.

Robert Nieuwenhuis and Albert Oliveras. 2005. Proof-Producing Congruence Closure. In Proceedings of the 16th International
Conference on Term Rewriting and Applications (Nara, Japan) (RTA’05). Springer-Verlag, Berlin, Heidelberg, 453–468.
https://doi.org/10.1007/978-3-540-32033-3_33

Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. 2015. Automatically Improving Accuracy for

Floating Point Expressions. SIGPLAN Not. 50, 6 (June 2015), 1–11. https://doi.org/10.1145/2813885.2737959

Oleksandr Polozov and Sumit Gulwani. 2015. FlashMeta: A Framework for Inductive Program Synthesis. SIGPLAN Not. 50,
10 (oct 2015), 107–126. https://doi.org/10.1145/2858965.2814310

Kenneth A. Ross and Yehoshua Sagiv. 1992. Monotonic Aggregation in Deductive Databases. In Proceedings of the Eleventh
ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Systems (San Diego, California, USA) (PODS ’92).
Association for Computing Machinery, New York, NY, USA, 114–126. https://doi.org/10.1145/137097.137852

Rust. [n.d.]. Rust programming language. https://www.rust-lang.org/. https://www.rust-lang.org/

Arash Sahebolamri, Thomas Gilray, and Kristopher Micinski. 2022. Seamless deductive inference via macros. In Proceedings
of the 31st ACM SIGPLAN International Conference on Compiler Construction. 77–88.

Yannis Smaragdakis and Martin Bravenboer. 2010. Using Datalog for Fast and Easy Program Analysis. In Proceedings of
the First International Conference on Datalog Reloaded (Oxford, UK) (Datalog’10). Springer-Verlag, Berlin, Heidelberg,
245–251. https://doi.org/10.1007/978-3-642-24206-9_14

Bjarne Steensgaard. 1996. Points-to Analysis in Almost Linear Time. In Conference Record of POPL’96: The 23rd ACM
SIGPLAN-SIGACT Symposium on Principles of Programming Languages, Papers Presented at the Symposium, St. Petersburg
Beach, Florida, USA, January 21-24, 1996, Hans-Juergen Boehm and Guy L. Steele Jr. (Eds.). ACM Press, 32–41. https:

//doi.org/10.1145/237721.237727

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 125. Publication date: June 2023.

https://doi.org/10.1016/S0743-1066(98)10005-5
https://doi.org/10.1007/978-3-030-89051-3_10
https://doi.org/10.1007/978-3-030-89051-3_10
https://doi.org/10.1145/543552.512566
https://doi.org/10.1016/S0747-7171(89)80018-5
https://doi.org/10.1145/308386.308446
https://doi.org/10.1007/BF00961871
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1109/CGO.2004.1281665
https://doi.org/10.1145/2980983.2908096
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3485496
https://doi.org/10.1109/PACT.2019.00015
https://doi.org/10.1007/978-3-540-32033-3_33
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2858965.2814310
https://doi.org/10.1145/137097.137852
https://www.rust-lang.org/
https://www.rust-lang.org/
https://doi.org/10.1007/978-3-642-24206-9_14
https://doi.org/10.1145/237721.237727
https://doi.org/10.1145/237721.237727


Better Together: Unifying Datalog and Equality Saturation 125:25

Tamás Szabó, Gábor Bergmann, Sebastian Erdweg, and Markus Voelter. 2018. Incrementalizing Lattice-Based Program

Analyses in Datalog. Proc. ACM Program. Lang. 2, OOPSLA, Article 139 (oct 2018), 29 pages. https://doi.org/10.1145/

3276509

Robert Endre Tarjan. 1975. Efficiency of a Good But Not Linear Set Union Algorithm. J. ACM 22, 2 (April 1975), 215–225.

https://doi.org/10.1145/321879.321884

Ross Tate, Michael Stepp, Zachary Tatlock, and Sorin Lerner. 2009. Equality Saturation: A New Approach to Optimization.

In Proceedings of the 36th Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming Languages (Savannah,
GA, USA) (POPL ’09). ACM, New York, NY, USA, 264–276. https://doi.org/10.1145/1480881.1480915

Allen Van Gelder. 1992. The Well-Founded Semantics of Aggregation. In Proceedings of the Eleventh ACM SIGACT-SIGMOD-
SIGART Symposium on Principles of Database Systems (San Diego, California, USA) (PODS ’92). Association for Computing

Machinery, New York, NY, USA, 127–138. https://doi.org/10.1145/137097.137854

Alexa VanHattum, Rachit Nigam, Vincent T. Lee, James Bornholt, and Adrian Sampson. 2021. Vectorization for Digital
Signal Processors via Equality Saturation. Association for Computing Machinery, New York, NY, USA, 874–886. https:

//doi.org/10.1145/3445814.3446707

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017a. Program Synthesis Using Abstraction Refinement. Proc. ACM Program.
Lang. 2, POPL, Article 63 (dec 2017), 30 pages. https://doi.org/10.1145/3158151

Xinyu Wang, Isil Dillig, and Rishabh Singh. 2017b. Synthesis of Data Completion Scripts Using Finite Tree Automata. Proc.
ACM Program. Lang. 1, OOPSLA, Article 62 (oct 2017), 26 pages. https://doi.org/10.1145/3133886

Yisu Remy Wang, Shana Hutchison, Jonathan Leang, Bill Howe, and Dan Suciu. 2020. SPORES: Sum-Product Optimization

via Relational Equality Saturation for Large Scale Linear Algebra. Proceedings of the VLDB Endowment (2020).
John Whaley, Dzintars Avots, Michael Carbin, and Monica S. Lam. 2005. Using Datalog with Binary Decision Diagrams for

Program Analysis. In Proceedings of the Third Asian Conference on Programming Languages and Systems (Tsukuba, Japan)
(APLAS’05). Springer-Verlag, Berlin, Heidelberg, 97–118. https://doi.org/10.1007/11575467_8

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha. 2021. Egg:

Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (jan 2021), 29 pages. https:

//doi.org/10.1145/3434304

Steven Wolfman, Pedro Domingos, and Daniel Weld. 2001. Programming By Demonstration Using Version Space Algebra.

Machine Learning 53 (12 2001). https://doi.org/10.1023/A:1025671410623

Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu RemyWang, MaxWillsey, Sudip Roy, and Jacques Pienaar. 2021. Equality

Saturation for Tensor Graph Superoptimization. In Proceedings of Machine Learning and Systems. arXiv:2101.01332
Yihong Zhang, Yisu Remy Wang, Oliver Flatt, David Cao, Philip Zucker, Eli Rosenthal, Zachary Tatlock, and Max Willsey.

2023. Better Together: Unifying Datalog and Equality Saturation. arXiv:2304.04332 [cs.PL]

Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock. 2022. Relational E-Matching. Proc. ACM Program.
Lang. 6, POPL, Article 35 (jan 2022), 22 pages. https://doi.org/10.1145/3498696

Received 2022-11-10; accepted 2023-03-31

Proc. ACM Program. Lang., Vol. 7, No. PLDI, Article 125. Publication date: June 2023.

https://doi.org/10.1145/3276509
https://doi.org/10.1145/3276509
https://doi.org/10.1145/321879.321884
https://doi.org/10.1145/1480881.1480915
https://doi.org/10.1145/137097.137854
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3445814.3446707
https://doi.org/10.1145/3158151
https://doi.org/10.1145/3133886
https://doi.org/10.1007/11575467_8
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304
https://doi.org/10.1023/A:1025671410623
https://arxiv.org/abs/2101.01332
https://arxiv.org/abs/2304.04332
https://doi.org/10.1145/3498696

	Abstract
	1 Introduction
	2 Background
	2.1 Datalog
	2.2 Equality Saturation

	3 egglog
	3.1 Datalog in egglog
	3.2 Functions and :merge
	3.3 Sorts and Equality
	3.4 Terms and Equality Saturation
	3.5 Beyond EqSat

	4 Semantics of egglog
	4.1 Syntax
	4.2 Semantics
	4.3 Semi-naïve Evaluation

	5 Implementation
	5.1 Components
	5.2 Language-based Design
	5.3 Micro-benchmarks

	6 Case Studies
	6.1 Unification-Based Points-to Analysis
	6.2 Herbie: Making an EqSat Application Sound

	7 Related Work
	8 Conclusion
	Acknowledgments
	References

