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Abstract

Towards a Relational E-graph

Yihong Zhang

This thesis presents my experience improving the performance and expressiveness of e-graphs

with both relational and non-relational approaches. Chapter 1 presents a non-relational opti-

mization algorithm for e-matching and studies its properties. Motivated by the insufficiency

of the non-relational approach, we turn to study ways to encode e-graphs inside Datalog in

Chapter 2. We also describe a prototype language, named egglog, for relational e-graphs

and its semantics in Chapter 3. Chapter 4 gives a survey of related work, and Chapter 5

concludes.
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Chapter 1

OPTIMIZING NON-RELATIONAL E-MATCHING

E-matching is an important procedure for many e-graph based applications, yet it is

slow. In a typical application of equality saturation, e-matching can take 60-90% of the

overall run time (Willsey et al., 2021). In the work presented in my bachelor’s thesis, my col-

laborators and I proposed a relational approach to e-matching, dubbed relational e-matching

(Zhang et al., 2022; Zhang, 2021). In particular, we made e-matching orders of magnitude

faster, proved theoretical bounds of e-matching, and opened the door for all kinds of wild

optimizations that can be done with databases and e-graphs.

However, the relational e-matching approach also has some secret pitfalls. In particular,

to have the best of both efficient e-graph maintenance and efficient e-matching, one has to

switch back and forth between the e-graph to its relational representation. Our prototype1

builds a relational database and associated indices from scratch for each match-apply itera-

tion. This is acceptable in the equality saturation setting. E-matching and updates always

alternate in batches, so the cost of building the database is amortized. Plus, since building

databases and indices are both linear time costs, they are often subsumed by the time spent

on e-matching.

However, what if e-matching is not run in batches? Or what if all the e-matching patterns

are quite simple and the constant overhead is now a bottleneck? An e-graph framework can

implement some fast paths for that, but then there are more design questions to consider:

Are we going to keep two implementations of e-matching? What kind of queries should be

computed by relational e-matching and what by traditional e-matching? . . . We can continue

down this path and put a lot of engineering effort into building a practically efficient e-graph

1https://github.com/egraphs-good/egg/tree/relational

https://github.com/egraphs-good/egg/tree/relational
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engine, or we can:

1. Start a clean-slate relational e-graph framework that handles all e-graph operations

efficiently and forget about the graph part of an e-graph;

2. Keep the current e-graph data structure, and port some optimizations of relational

e-matching back to e-graphs.

In this chapter, I will focus on the second approach. The rest of the thesis will focus

on the first approach. When working on relational e-matching, we found an optimization to

the backtracking-style classical e-matching. Like relational e-matching, it is able to improve

e-matching asymptotically in some cases, but it does not require transforming the input

e-graph to a relational database. And it is very simple. For what it is worth, this optimization

(instead of relational e-matching) is what is currently implemented in egg.

In this chapter, I will describe this optimization. But before that, we will go over some

brief background on e-matching. Readers are welcome to skip it if they already know what

e-matching is.

1.1 E-Matching

There have been many great introductions to e-graphs and e-matching. For example, Philip

Zucker gives a gentle introduction to e-graphs (Zucker, 2020b) and e-matching (Zucker,

2020a) in Julia. Max Willsey also wrote a very nice tutorial (Willsey, 2020) on e-graphs and

egg (Willsey et al., 2021). Basically, an e-graph is a data structure that compactly repre-

sents an equivalence relation and e-matching is pattern matching on such e-graphs modulo

equivalence. Both e-matching and e-graphs are widely used in SMT solvers (de Moura and

Bjørner, 2007) and equality saturation-based program optimizers (Yang et al., 2021). A

typical equality saturation-based program optimizer may take the majority of its time doing

e-matching.
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There are several algorithms proposed for e-matching. For example, the one currently

used in egg is based on the virtual machine proposed by de Moura and Bjørner (2007). The

traditional backtracking-based e-matching algorithm does not exploit equality constraints

during pattern compilation. Equality constraints are the term we used in the relational e-

matching paper to describe the kind of constraints that all occurrences of the same variables

should be mapped to equivalent terms. Those that violate the equality constraints will not

be pruned away immediately. For example, f(α, g(α)) does not match f(1, g(2)), because

the first α is mapped to 1 but the second is mapped to 2. The classical backtracking-based

e-matching will still consider it though.

The relational e-matching approach instead treats an e-matching pattern as a kind of

relational query. From a relational query, the query optimizer can easily identify all kinds of

constraints, including equality constraints, and find an efficient query plan. As an example,

the above pattern can be compiled to query Q(r, α)← Rf (r, α, x), Rg(x, α), and a hash join

could answer this query in linear time.

1.2 The optimization

The issue with the traditional backtracking-style e-matching is that it does not take ad-

vantage of the equality constraints, so it enumerates obviously unsatisfying terms. The

optimization is therefore straightforward: do not enumerate terms that are obviously unsat-

isfying. And this is easy, because we already know what the (only) satisfying term should

look like!

Let us first look at the classical e-matching algorithm (reproduced from Zhang et al.

(2022, Figure 3), with a typo fix).
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match(x, c, S) ={σ ∪ {x 7→ c} | σ ∈ S, x 6∈ dom(σ)} ∪

{σ | σ ∈ S, σ(x) = c}

match(f(p1, . . . , pk), c, S) =
⋃

f(c1,...,ck)∈c

match(pk, ck, . . . ,match(p1, c1, S))

It takes a pattern p, an e-class c, and current substitutions S, and returns the set of

substitutions produced by e-matching p over e-class c, such that all produced substitutions

are extensions of some substitutions in S. The result of e-matching a pattern p over an

e-graph is ⋃
c∈C match(p, c, {∅}) (both Zhang et al. (2022) and de Moura and Bjørner (2007)

have another typo here), where C is the set of e-classes in the e-graph.

The algorithm is straightforward:

1. If the pattern is a variable, and

(a) if this variable is fresh in the domain of the substitution, then it is safe to extend

the substitutions with {x 7→ c}, or

(b) if this variable is not fresh, we keep only these substitutions that are consistent

with the mapping {x 7→ c}.

2. If the pattern is a function symbol of the form f(p1, . . . , pk), the algorithm iterates over

f -nodes f(c1, . . . , ck) in the e-class, and fold over the sub patterns and sub e-classes

with match, to accumulate set of valid substitutions.

The trick is to generalize case 1.b. In case 1.b, we know the substitution for a pattern

is unique when the pattern is a non-fresh variable, but we also know this when the vari-

ables of the pattern are in the domain of the substitution (i.e., fv(p) ⊆ dom(S)), thanks to

canonicalization. In that case, the pattern after substitution is a ground term, which can be

efficiently looked up in a bottom-up fashion.

To implement this idea, we lift case 1.b to the top-level of the algorithm. During e-

matching, the algorithm will first check whether the free vars of the input pattern is contained
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in the domain of the substitution. If yes, then instead of looking further into the pattern, the

algorithm will lookup the substituted term for comparison. The following definition shows

this:

match(p, c, S) =


{σ | σ ∈ S, lookup([σ]e) = c} if fv(p) ⊆ dom(S)

match′(p, c, S) o.w.

match’(x, c, S) ={σ ∪ {x 7→ c} | σ ∈ S}

match’(f(p1, . . . , pk), c, S) =
⋃

f(c1,...,ck)∈c

match(pk, ck, . . . ,match(p1, c1, S))

In the above definition, we also drop the check of x 6∈ dom(σ) for the variable case, which is

guaranteed not to happen.

As an example, consider f(α, g(α)) again. E-matching will enumerate through each f -

node and bind α to the first child of the f -node. Here, the classical e-matching algorithm will

then enumerate though the second child e-class of the f -node for possible g-nodes. However,

because g(α) is a ground term after substituting α with σ(α), we can effectively lookup g(α)

and compare it with the e-class id of the second child. The pseudocode:

# classical e-matching

for f in c: # f(a, g(a))

for g in f.child2: # g(a)

if f.child1 != g.child1:

continue

yield {a: f.child1}

# with the trick

for f in c: # f(a, g(a))

g = lookup(mk node(g, f.child1))

if g is None or g != f.child2:

continue
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yield {a: f.child1}

Implementation-wise, egg adds a new operator to the e-matching virtual machine called

Lookup. Lookup (1) substitutes the pattern with values in the VM register to produce a

ground term and (2) lookup the ground term in the e-graph.

1.3 A Relational View of the Trick

How effective is this trick? To have a better understanding of this trick, we need to take a

relational lens. The classical e-matching can be viewed as a relational query plan where hash

joins only index one column (the link between parent and child) and potentially prune using

the rest of equality columns (the equality constraint). At first I thought this optimization

will make classical e-matching equivalent to some efficient hash join-based query plans, and

a efficient plan here specifically means a plan where the hash joins will index all the columns

known to be equivalent. But this is false. Consider the pattern f(α, g(α, β)). The relational

version of it is Q(r, α, β) ← Rf (r, α, x), Rg(x, α, β). An efficient plan with hash joins will

index both α and x. However, our trick cannot use the α in f to prune the α in g, because

there could be multiple satisfying g-nodes (due to the unbound variable β). In this case, our

optimization does not offer any speedup.

In fact, this trick can be relationally thought of as the kind of query optimizations that

leverage functional dependencies. In the relational representation of e-graphs, there is a

functional dependency from the children columns to the id column. For example, in relation

Rf (x, c1, c2), the relational representation of binary function symbol f , every combination

of c1 and c2 uniquely determines x thanks to e-graph canonicalization. Our trick uses this

information to immediately determine the value of x once c1 and c2 are known, without

looking at obviously unsatisfying candidates.

In the relational e-matching paper, we also described how we use functional dependency to

speed up queries. In fact, if the variable ordering of generic joins follows the topological order

of the (acyclic) functional dependency, the run-time complexity will be worst-case optimal
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under the presence of FDs (Ngo, 2018), a stronger guarantee than the original AGM bound

(Atserias et al., 2008). Functional dependencies are also exploited for query optimization in

databases (Kossmann et al., 2022).

How does this compare to relational e-matching? First, as we saw above, it is not as

powerful as relational e-matching. Moreover, the graph representation has the fundamental

restriction that makes it very hard to do advanced optimizations, e.g., one that uses cardinal-

ity information. It is also limited in the kind of join it is able to (conceptually) perform (only

hash joins). However, it integrates well with an existing non-relational e-graph framework,

which relational e-matching fails to achieve.

1.4 Query planning

This trick also poses a new question for classical e-matching planning: what visit order

should one use? In the above definition of our algorithm, we assumed a depth-first style

order of processing, but this is not necessary. For example, after enumerating the top-level

f -node in pattern f(g(α), h(α, β)), it will be most efficient to enumerate the h-node and

lookup [σ]g(α) later. If however we first enumerate g(α), we still cannot avoid enumerating

h(α, β) later on.

If we assume the cost of enumerating each node is the same, this problem can be viewed

as finding the smallest connected component (CC) in the pattern tree that contains the root,

such that the CC covers all distinct variables. This is not an easy problem, and similar

problems are NP-hard. This problem can be solved using dynamic programming on trees

with exponential states, or can be reduced to an ILP problem. However, both seem to be an

overkill for realistic queries.

It is also unclear what is a practically good planning heuristic. The one used in egg

prioritizes sub-patterns with more free vars, but this may not be good enough: consider

pattern f(f(g(α), β)), g(h(α), h(β))). This heuristics yield the following plan for this pattern:

for f1 in c: # f(f(g(a), g(b))), g(h(a), h(b)))
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for f2 in c.child1: # f(g(a), g(b))) (2 free vars)

for g1 in c.child2: # g(h(a), h(b)) (2 free vars)

for g2 in f2.child1: # g(a) (1 free var)

h1 = lookup(mk node(h, g2.child1) # lookup h(a)

if h1 is None or h1 != g1.child1:

continue

for g3 in f2.child2: # g(b) (1 free var)

h2 = lookup(mk node(h, g3.child1) # lookup h(b)

if h2 is None or h2 != g1.child2:

continue

yield {...}

This is complicated, but it suffices to only look at the first three loops: It does a cross

product over the first and the second child of the top-level f -node. A good strategy here

is instead to prefer fewer free vars, and performs the search in a depth-first search, so that

g(h(a), h(b)) can be looked up all at once after f(g(a), g(b)) is enumerated. But it is not yet

known if preferring fewer free vars is the right strategy. Moreover, realistic patterns tend to

be small and simple, so cases like the above may be rare.

1.5 Miscellaneous

This chapter is adapted from my blog post A Trick that Makes Classical E-Matching Faster

(Zhang, 2022). I thank Max and Phil for their valuable discussions and comments. The

presented trick stems from a Pull Request2 that tries to improve e-matching for ground

terms. In hindsight, a variant of the proposed improvement targeting multi-patterns had

been discussed in de Moura and Bjørner (2007) but was lost in egg’s original e-matching

implementation. Compared to that Pull Request, which only looks up ground terms, this

optimization generalizes it by also looking up terms that are grounded after substitution.

2https://github.com/egraphs-good/egg/pull/74

https://github.com/egraphs-good/egg/pull/74
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Phil came up with this idea independently as well3.

3https://github.com/egraphs-good/egg/pull/74#issuecomment-818833367

https://github.com/egraphs-good/egg/pull/74#issuecomment-818833367
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Chapter 2

ENCODING E-GRAPHS IN EXISTING DATALOG SYSTEMS

In Chapter 1, we discussed optimizations to make classical e-matching faster. As we see,

there are still many limitations to the classical e-matching algorithm despite the proposed

optimizations. Query plans are limited to certain special forms, so many queries are asymp-

totically slower using classical e-matching. Moreover, many advanced join algorithms (like

the generic join algorithm) and optimizations (like ones using cardinality estimation) cannot

be used due to the fundamental restriction of its graph representation. To enjoy the highly

efficient e-matching procedure and the provided theoretical guarantees, we have to look back

at the relational e-matching approach. However, relational e-matching has the “dual rep-

resentation” problem: While e-matching is performed on the relaitonal representation, the

graph representation is necessarily for standard e-graph operations like congruence mainte-

nance. Therefore, both representations are needed and should be kept in sync for relational

e-matching to work. This can have nontrivial overheads (Zhang et al., 2022).

A natural question to ask is, if keeping both representation is expensive, and efficient

e-matching requires a relational representation, can we keep only the relational representa-

tion? This way, we are doing not only e-matching relationally, but also all other e-graph

operations, and the ultimate goal is to be able to run equality saturation in this relational

representation. Compared to the optimizations described in Chapter 1, this proposal is more

radical, as it challenges the well-accepted assumption that an e-egraph is a graph. To im-

plement this proposal, two key issues need to be addressed. First, equality saturation uses

equational rewrites to grow the e-graph, so it is important to understand the semantics of

rewrites in the relational representation. Second, a key ingredient to e-graphs is the mainte-

nance of its congruence invariant. Therefore, a relational e-graph must be able to perform
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congruence maintenance as well. To address the first issue, we propose to encode e-graphs in

Datalog. Datalog is a relational language with rigourous semantics and efficient evaluation

algorithms, where logic rules describe dependencies between relations. Logic rules in Data-

log have the form R(. . .) : −R1(. . .), . . . , Rn(. . .) and operationally performs fixpoint-based

rewrites but for relations. Moreover, both rewrites in e-graphs and logics rules in Datalog

are non-destructive, meaning that they do not remove original facts during the rewrites.

Therefore, it is tempting to encode e-graph rewrites in Datalog.

This chapter introduces my experience encoding e-graph rewrites in two Datalog systems,

namely Soufflé (Jordan et al., 2016) and Rel (Rel documentation team, 2022). Soufflé and Rel

are different in many aspects, with different targeted use cases: Soufflé focuses on applications

like program analyses and has a semantics very similar to the original Datalog, with “mild”

extensions like algebraic data types (ADTs), built-in support for equivalence relations, and

the choice operator. One of the most aggressive extension is perhaps the newly added

subsumption, which allows the users to delete tuples when it is clear that they are subsumed

by other more general tuples (Köstler et al., 1995). We will see subsumption is in fact critical

in preventing the encoded e-graphs from blowup. Rel, in contrast, has more ambitious goals.

While spiritually inspired by Datalog, Rel has a much more expressive front end language

based on first-order logic. As an example, queries in Rel support universal quantifiers and

existential quantifiers in arbitrary positions (as long as the domain of the quantified variables

are finitely enumerable).

One important distinction between Soufflé and Rel is that Rel supports recursive aggre-

gates out of box. Rigourous theories are developed for sound programming with recursive

aggregates in Rel (Abo Khamis et al., 2022a), yet to facilitate even more flexible general-

purpose programming, soundness are not enforced in practice. As a result, one needs to be

careful when using recursive aggregates in Rel, to not violate properties like monotonicity.

I use recursive aggregates in both encodings: while Rel supports it out of box, for Soufflé,

I explicitly disabled the stratification checker. Despite the wide use of recursive aggregates,

the encoding is still sound, because it is semantically clear that rewrites in an e-graph is
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monotonic. Moreover, in the encoding, tuples are only removed when they are subsumed

by a more canonicalized version of them, which intuitively provides a justification for the

soundness.

A key ingredient to making e-graph efficient is to keep only the canonical tuples. However,

the encoding in both systems are not completely satisfying. For Soufflé with the subsumption

extension, a tuple can only be removed when it is able to find an evidence that this tuple

is subsumed. For Rel, every iteration starts from scratch, so the only way to remove tuples

is to recompute all the facts in the current iteration while excluding the removed tuples,

which is indirect. Despite demonostrating the feasibility of encoding e-graphs in Datalog,

both encodings are practically orders-of-magnititude slower than egg. Constraint-Handlign

Rules (CHR) (Frühwirth, 2009) is a potential solution to this problem, as its rules allows

more flexible removal of tuples. Moreover, the literature has investigated ways to encode

the optimal implementation of union-find in CHR (Schrijvers and Frühwirth, 2006), which

is perhaps the most critical step in encoding an e-graph. However, I did not pursue this

approach for a long time, since as far as I am aware, available implementations of CHR

either misses important features, or is obsure and difficult to use.

Through out this chapter, we will use a very classical equality saturation program,

namely associativity and commutativity (AC rules) of the + operator, as our example.

The (pseudo)code in Listing 2.1 shows how this can be defined in a library like egg. As

a baseline, it takes less than one second for egg to conclude that ∑8
i=1 vi is in the same

e-class as ∑1
i=8 vi. For our Datalog encoding, we did not expect it to be as efficient as highly

specialized e-graph frameworks like egg. In fact, even the best encodings presented in this

chapter are not capable of proving the above equivalence, although it is not unimaginable

that a customized Datalog engine can be specialized for our e-graph encodings and therefore

more efficient. Moreover, for each of our encodings, it is either the case that there are more

or less overheads that will not been seen in a sensible e-graph impelementation, or we have

to do some delicate hacking into the Datalog engine that the engine impelementers may be

surprised about. Therefore, in some sense, our attempts to encode e-graphs in Datalog is
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unsatisfactory. However, as we will see, there are many shining gems we find during this

journey.

Listing 2.1: The example equality saturation program used in this chapter.

// Enum declaration

define_language! {

enum Expr {

Add(Id, Id),

Var(i64),

}

}

// Rewrites

let rewrites = vec![

rw!("(+␣?x␣?y)" => "(+␣?y␣?x)");

rw!("(+␣(+␣?x␣?y)␣?z)␣=>␣"(+ ?x (+ ?y ?z))");

];

2.1 Encoding E-graphs in Soufflé

2.1.1 Background

Soufflé is a modern, efficient Datalog engine that has wide applications in program analyses

(Antoniadis et al., 2017; Jordan et al., 2016; Hu et al., 2021). While sticking to the dogma

of monotonicity, Soufflé has been extended with a diverse range of extensions to both make

it easier to program program analyses tasks and faster to run these tasks. These extensions

are amenable to the core theory of Datalog, e.g., monotonicity andsemi-näıve evalution.

(suppose the user does not break the assumptions)1. We sketch some of these extensions

1With the exception of termination guarantees of pure Datalog. Similar to programs in many other
practical Datalog engines, Soufflé programs may not terminate since they are allowed to populate new
values, which is useful in practice.
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that are used in our encoding below:

Algebraic Data Types

Soufflé supports algebraic data types (ADTs) as columns. For example, the program below

below declares an Abstract Syntax Tree of the example in Listing 2.1 in Soufflé and populates

the term v1 + v2 in relation R:

.type Id = Add {x : Id, y : Id}

| Var {n : number}

.decl R(Id).

R($Add($Var(1), $Var(2))).

Internally, Soufflé keeps a record table for ADTs, where each tuple has a unique reference

id, the branch id for its constructor, and the field values. Therefore, the encoding is very

similar to the one used in relational e-matching, with the difference being in relational e-

matching, different branches of an AST is represented as different tables, not different ids

within the same table. This encoding allows Soufflé to perform efficient join over ADTs. The

reader may wonder why we still use ADTs while we can simulate the same features with the

relational encoding a la the relational e-matching paper. In fact, we use both: ADTs are

specifically used in a skolemizing fashion, i.e., we use ADTs as a handy way to creating new

e-class ids. For example, $Add(x, y) represents the “natural” e-class id of the e-node with

symbol Add and children x and y. Other approaches to creating new e-class ids include using

the hash of the e-nodes, which we used for Rel.

Equivalence relations

Equivalence relations are widely used for different program analyses tasks, such as Bitcoin

user group analysis (Reid and Harrigan, 2013) and points-to analyses (Kastrinis et al., 2018;

Steensgaard, 1996). While directly writing these equivalence relations as transitive, reflexive,

symmetric rules are highly inefficient, data structures like union find (Tarjan, 1975) can make
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reasoning about equivalence orders of magnititude faster. Soufflé provides a built-in support

for equivalence relations named eqrel. A relation declared as eqrel will always satisfy the

equivalence rules and is implemented internally using union-find. eqrel is designed to be

highly parallelizing, and it compactly representes the equivalence relation in linear space,

while it takes up to quadratic space to represent it directly.

Subsumptions

Subsumption (Köstler et al., 1995) is the idea that when one tuple is subsumed by another

tuple semantically, it does not hurt to remove the subsumed tuples. For example, when

computing the shortest paths between pairs of vertices in a graph, one may only care about

the shortest paths. Consider the following Datalog program that computes the shortest path:

p(x, y, c) :- e(x, y, c).

p(x, y, c) :- p(x, z, cp), e(z, y, ce), c = cp + ce.

sp(x, y, c) :- v(x), v(y), c = min c : p(x, y, c).

This program will compute all possible paths between pairs of vertices, before aggregating

over the paths to derive the shortest paths. This is inefficient compared to the standard

shortest path algorithms like Dijkstra’s algorithm. Worst, when the graph contains (even

positive) cycles, these rules may not terminate, because there are infinitely many paths.

Subsumption addresses this issue by allowing the deletion of paths that are knwon to be not

optimal, i.e., those non-shortest paths:

sp(x, y, c) :- e(x, y, c).

sp(x, y, c) :- sp(x, z, cp), e(z, y, ce), c = cp + ce.

sp(x, y, c1) <= sp(x, y, c2) :- c1 >= c2.

The last rule defines a partial order on sp and says that tuple sp(x, y, c1) will be subsumed

by tuple sp(x, y, c2) if c1 is less than or equal to c2 (note subsumption is a reflexive

relation). Operationally, the “reduced set” will be computed after each iteration of evaluation



16

according to the subsumptive rules. Köstler et al. (1995) developed a rigourous theory of

subsumptions in Datalog and proved its soundness. Finally, other approaches are proposed

based on semirings (Abo Khamis et al., 2022b,a) and lattices (Madsen et al., 2016). For

example, the Rel language, introduced in Section 2.2, is based on the semiring approach.

In our encoding, we use subsumptions to remove obsolete information. For example,

e-classes are being constantly merged, updated, and canonicalized, which will cause e-nodes

to be canonicalized from time to time. This leads to the existence of multiple representations

of the same e-node, with only one being the canonical at any time. Keeping these stale

e-nodes will explode the e-graph. Instead, we can define a partial order over the e-graphs so

that all stale e-nodes are subsumed by their canonical version and let subsumptions to clean

up the stale e-nodes. We will discuss this in details in Section 2.1.4.

User-defined functors

While Soufflé provides a rich set of primitive operators, it further provides the flexibility by

allowing the users to bring their own functions, which Soufflé calls user-defined functors. To

declare a user-defined functor, the user defines its implementation in a C++ program and link

it during the execution of the Soufflé program. Some of the encodings use the user-defined

functors to make eqrel more flexible (Zucker, 2022b,a). Compared to the standard usage, we

use user-defined functors in a rather wild way, following Zucker (2022b) (see Section 2.1.5).

Aggregations

Finally, Soufflé supports stratified aggregations, which is a standard extension to Datalog.

In other words, Soufflé accepts programs where aggregation operators like max, min, and

sum does not transitively refer to themselves (i.e., are not recursive). The stratification

requirement is crucial to the soundness of the extension because it guarantees that the rules

are monotonic. Below is an example that does not satisfy the stratification:

R(x) :- x = 1.
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R(c + 1) :- c = max x : R(x)

Aftr the first iteration, the database D1 will contain only R(1). In the second iteration,

because the second rule fires, the database D2 will be {R(1), R(2)}. However, in the third

iteration, the application of the second rule to D2 will yield R(3), and R(2) that used to

exist in D2 is now found nowhere, which breaks monotonicity.

That being said, there are Datalog programs that break monotonicity, yet are still

(semantically) monotonic (e.g., one with subsumptions). We use recursive aggregations

throughout in our encoding, because it is semantically clear that e-graphs are growing in

a monotonic way. Soufflé does not support recursive aggregations by default, so we pass the

--disable-transformers=SemanticChecker flag to Soufflé to disable the semantic check.

By doing this, we entered the dangerous land of Soufflé since all the assumptions checked

by the semantic checker could be violated. This could also have performance implications:

each single aggregation is fully computed using linear scan every time instead of incremen-

tally maintained, since the design of Soufflé does not expect recursive use of aggregations.

When aggregations are stratified, this is fine because all the aggregations are “one-shot”,

while when aggregations are used recursively, this means that the aggregations will require

repeated linear scans of aggregated relations. This can be prohibitively expensive, and we

mitigate this issue with more hacking into Souffé’s internals.

2.1.2 A Naiv̈e Encoding

Our first encoding is inspired by the denotation of e-graphs: an e-graph represents a set of

terms and a congruence relation over them. We can use the relational representation in the

relational e-matching paper to represent the set of terms, and use eqrel to represent the

congruence relation over terms.

.type Id <: number

.decl add(I : Id, I : Id, id : Id)

.decl var(x : number, c : Id)
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.decl eql(x : Id, y : Id) eqrel

add(y, x, yx), eql(xy, yx)

:- add(x, y, xy), yx = ???.

add(x, yz, x_yz), add(y, z, yz)

:- add(x, y, xy), add(xy, z, xy_z),

yz = ???, x_yz = ???.

Here we are using integers to represent e-class ids, but we run into an issue: we do not

know how to refer to the e-class id of (potentially) new e-classes. For example, in the

commutativity rule, it is not obvious what value should we assign to yx. One approach is to

take the hash function of its children e-class ids, yet it may lead to collision (with a relatively

small probability). Instead, we took inspiration from the skolemized chase (Benedikt et al.,

2017) and use ADTs to represent the “natural” e-class id of the e-node, e.g., the id of x+ y

is $Add(x, y).

.type Id = Add {x : Id, y : Id}

| Var {n : number}

.decl add(I : Id, I : Id, id : Id)

.decl var(x : number, c : Id)

.decl eql(x : Id, y : Id) eqrel

add(y, x, yx), eql(xy, yx)

:- add(x, y, xy), yx = $Add(y, x).

add(x, yz, x_yz), add(y, z, yz)

:- add(x, y, xy), add(xy, z, xy_z),

yz = $Add(y, z) x_yz = $Add(x, yz).

The above program describes the way we perform rewrites in Soufflé, where the idea is

general across the encodings presented in this section.

However, this is not a complete e-graph implementation yet. First, it does not represent

the whole term space, which will miss potential rule firing. For example, suppose the databse
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has {add(a, b, c1), add(c2, d, e), eql(c1, c2)}, because c1 and c2 are equivalent,

the associativity rule should be fired. However, the rewrite rules does not syntactically

match. There are two solutions in this nav̈e encoding. First, we can modify the rewrite

rules, e.g., we can rewrite the associativity rule to be:

add(x, yz, x_yz), add(y, z, yz)

:- add(x, y, xy1), eql(xy1, xy2), add(xy2, z, xy_z),

yz = $Add(y, z) x_yz = $Add(x, yz).

Note that the eql relation is quadratic in size, so this rewrite rule will be drastically slower

than the original one. Alternatively, it is also possible to simply populate the whole term

space, with the following rules.

add(x1, y, c) :- add(x, y, c), eql(x, x1).

add(x, y1, c) :- add(x, y, c), eql(y, y1).

add(x, y, c1) :- add(x, y, c), eql(c, c1).

num(x, c1) :- num(x, c), eql(c, c1).

As an e-graph can represent exponentially many terms, this could be even slower. Finally,

after fixing the above missed firing, there is one last missing piece: eql is not a congruence

relation yet. For it to be congruent, the following rules need to be added (assuming our

encoding populates the entire term space):

eql(c1, c2) :- add(x, y, c1), add(x, y, c2).

eql(c1, c2) :- num(x, c1), num(x, c2).

If the term space is not explicitly represented, we could add one more indirection to our

congruence rule via the eql relation as we did for rewrites:

eql(c1, c2) :- add(x1, y1, c1), add(x2, y2, c2),

eql(x1, x2), eql(y1, y2).
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2.1.3 An Encoding with the Leader Relation

The näıve encoding is not really an e-graph. It is more like an explicit way of encoding the

congruence relation and rewrites over it. An e-graph is a particular data structure that makes

the congruence relation efficient. To make the congruence relation highly efficient, e-graph

aggressively canonicalizes its e-nodes: In a valid e-graph, only canonicalized e-nodes and

e-class will exist, so there won’t be two different representations of semantically equivalent

e-nodes and e-classes. This enables efficient matching in e-graph, since we only need to match

on the canonical representation. While in our näıve encoding, we need to either populate all

possible representations of an e-node, or we match with a layer of indirection. Therefore, a

natural idea is to also do canonicalization in the Datalog encoding.

To canonicalize, we first need to pick a canonical id for each e-class. Here, we pick

the canonical id to be the min of all ids (converted from the pointer to the ADT) in this

e-class, which we call the leader. The relation that maps an arbitrary id to its leader can be

straightforwardly defined as follows:

.decl leader(a : Id, b : Id)

leader(a, as(b, Id)) :-

eql(a, a), // constraint a to be an e-class id

b = min b1 : { eql(a, b), b1 = as(b, number) }.

The leader relation has a similar purpose as the find operation of the union-find data

structure, as both return the canonical representation of an e-class id and can be rather

efficiently maintained under updates to the congruence relations. However, the union-

find data structure is significantly more efficiently, since it does not instantiate all the

(id, canonical-id) pairs, which the leader relation does. Therefore, when an update

to the congruence relation happens, the leader relation may update all the O(N) pairs in

worst case. Note there are two intricacies to this statement. First, in the encoding presented

in this section, no tuples are updated in-place. Rather, new tuples are populated and the

old tuples will not be removed. Section 2.1.4 will introduce a way to delete old tuples via
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subsumption. Second, the updates to the leader relation is not immediately performed when

the congruence relation is updated. Rather, the leader relation is re-computed iteration by

iteration in a batched fashion. This may amortize the cost of updating the relation. Overall,

the declarative nature of Datalog makes it more complicated to reason about the run-time

behavior, in particular the time complexity, of the leader relation. That being said, the

declarativeness makes reasoning about the correctness easier.

With the leader relation, we populate canonicalized e-nodes for each e-node:

add(x1, y1, c1) :- add(x, y, c),

leader(x, x1), leader(y, y1), leader(c, c1).

num(x, c1) :- num(x, c), leader(c, c1).

Compared to the näıve encoding, this does not populate the whole term space, but only a

space that include all e-nodes that are once canonical. As a result, it may contain e-nodes

that are not necessarily canonical (but used to). This means extra spaces are needed for these

non-canonical e-nodes, and redundant matching may be performed on them. Moreover, the

leader relation is monotonically computed, meaning that the leader relation may record all

the historical leaders of an e-class id. Yet this is still far less work than our näıve encoding,

where we represent every term explicitly. In terms of the actual performance, this encoding

is capable of saturate the e-graph with initial expression ∑N
i=1 vi under AC rules for N = 5

in 0.37 second and N = 6 in two minutes, while the näıve encoding does not terminate in

three minutes.

As a final note, compared to the näıve encoding, this encoding is no longer stratified:

leader aggregaets over eql and populates add; add is used in rewrite rules, which updates

eql. Therefore, leader can update the relation it aggregates over, which is not sound in

general. Starting at this section, all the encodings rely on the monotonicity of e-graphs to

justify the soundness.
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2.1.4 Optimizing the leader relation with subsumptions

One of the inefficiencies of the encoding presented in Section 2.1.3 is from the redundant

e-nodes and leader entries that was once up-to-date (but no longer). Ideally, one will want

to get rid of these stale e-nodes and leader entries, yet plain Datalog does not removal of

tuples for the sake of monotonicity. Fortunately, subsumption allows us to remove subsumed

tuples given a partial order. Particularly, since we define the leader of an e-class id to be the

smallest id that is equivalent to it, the partial order over e-class ids can be straightforwardly

given by < within the same equivalence class. Therefore, the following rule can be added to

remove stale leader entries when a “better” leader is found:

leader(x, y1) <= leader(x, y2) :-

as(y1, number) <= as(y2, number).

Similarly, to canonicalize e-nodes:

add(x1, y1, c1) <= add(x2, y2, c2) :-

leader(x1, x2), leader(y1, y2), leader(c1, c2).

var(x, c1) <= var(x, c2) :-

leader(c1, c2).

However, the first rule, which canonicalize add, is extremely slow in Soufflé due to poor

query planning. It will perform a cross product over the add×add, which is not acceptable.

Therefore, we need to instead specify a manual query plan for this rule:

add(x1, y1, c1) <= add(x2, y2, c2) :-

leader(x1, x2), leader(y1, y2), leader(c1, c2).

.plan 0:(1, 3, 4, 5, 2),

1:(1, 3, 4, 5, 2),

2:(1, 3, 4, 5, 2),

3:(1, 3, 4, 5, 2),

4:(1, 3, 4, 5, 2),
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5:(1, 3, 4, 5, 2)

The following query plan is specified:

Join

+-------+------+

| |

| |

Join leader(c1, c2)

+------+------+

| |

| |

Join leader(y1, y2)

+-----+----+

| |

| |

add(x1, y1, c1) leader(x1, x2)

Since the leader relation is (almost) an bijection, this join plan can be executed in (almost)

linear time. These two rules decreases the runtime from two minutes to 22 seconds for N = 6

in the above benchmark, yielding a 6× speedup.

Finally, as a side optimization, so far we have been using eql(a, a) enumerate through

e-class ids. It turns out Soufflé’s eqrel will enumerate the (delta of the) eql relation for

this operation, which is super linear to the size of e-class ids. To get rid of this overhead, we

explicitly represent all the ids:2

.decl ids(a : Id)

ids(x) :- add(_, _, x).

2Readers may be curious why we still keep the eql atom of leader computations. In fact, the author is
curious as well—deleting it makes the output unsound. The author speculates this is to make sure that
leader is dependent on eql, which Soufflé cannot infer otherwise. Alas, too many hacks.
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ids(x) :- var(_, x).

leader(a, as(b, Id)) :-

ids(a), eql(a, a),

b = min b1 : { eql(a, b), b1 = as(b, number) }.

This makes sure enumerating ids will run linearly in the size of e-class ids and further reduces

the run time to 17 seconds.

2.1.5 Efficient computation of leaders using reflections

With the subsumption-based optimiaztion in the last section, we are able to keep only

canonicalized e-nodes and e-classes, which makes the rule rewriting even more efficient.

However, benchmarking the program from the last section shows that the majority of time is

spent in computing the leader relation, even though we have made sure e-class enumeration

takes only linear time. Therefore, our last optimization for the Soufflé encoding of e-graph

will focus on rules that compute the leader relation.

Let us begin by revisiting the leader rules:

leader(a, as(b, Id)) :-

ids(a), eql(a, a),

b = min b1 : { eql(a, b), b1 = as(b, number) }.

leader(x, y1) <= leader(x, y2) :-

as(y1, number) <= as(y2, number).

The first rule is extremely slow. Inspecting into the generated IR shows that for every a,

Soufflé will enumerate through the eql relation indexed by a to find the smallest id, which

is a linear operation. Moreover, even though the smallest id stays the same within the same

equivalence class, Soufflé does not know that. As a result, an equivalence class of size n

will need to recompute min n times. Therefore, rule can take up to quadratic time at each

iteration.
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To address the second issue, I follow Zucker (2022b), reflecting the internals of eqrel of

Soufflé out to programs written in Soufflé. Admittedly, this is very hacky and dangerous,

but it gives us the last speedup for our Soufflé encoding. To implement this optimization, we

first add support for the FIND operation, which finds the internal canonical representations of

members of the eql relation, to our program. A user-defined functor called FIND is declared

in our Soufflé program, using Soufflé compiler to generate C++ code, and text-replace each

call to FIND to an call to the internal union-find data structure.

FIND allows us to save work by only allowing the canonical id to perform aggregation,

and any other id a should instead derive its leader by consulting the leader of FIND(a). This

ensures that every e-class will perform only one aggregation over its members:

leader(a, as(b, Id)) :-

ids(a), eql(a, a),

a = FIND(a), b = min b1 : { eql(a, b), b1 = as(b, number) }.

leader(a, b) :-

ids(a), eql(a, a), a != FIND(a), leader(FIND(a), b).

This effectively makes the computation of the leader relation in each iteration linear in the

size of ids, since every id will be enumerated only once by the ids relation and once by the

aggregation.

Finally, if the internals of Soufflé have already provided us with a canonical representation,

why would we even bother to compute leader at all?

leader(a, FIND(a)) :- ids(a), eql(a, a).

leader(x, y1) <= leader(x, y2) :-

eql(y1, y2),

y2 = FIND(y1).

This is our ultimate encoding of e-graphs in Soufflé, being able to saturate ∑6
i=1 vi under

AC rules in under one second, and ∑7
i=1 vi within 20 seconds, which all other encodings

presented in this section times out.
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2.2 Encoding E-graphs in Rel

The Soufflé encoding of e-graphs is concise and efficient. However, it relies on some of the

critical features of Soufflé, such as subsumptions and built-in equivalence relations, with-

out which the encoding will be orders of magnititude slower (e.g., the näıve encoding in

Section 2.1.2). Moreover, the design of the Soufflé encoding is also limited by some of the

restrictions Soufflé imposes. For example, strict monotonicity means that tuples existing in

the last iteration will stay here unless subsumption explicitly removed it.

In this section, we consider this same problem of encoding e-graphs in Datalog from a

quite different spot in the design space. Rel does not support subsumptions nor built-in

equivalence relations, yet it eases general-purpose programming by sacrificing monotonicity.

Rel does not check for monotonicity during the compilation, and the evaluation algorithm by

default does not perform semi-näıve evaluation nor keep old tuples. Instead, Rel iteratively

applies the rules to the lastest database instance to derive the input to the next iteration,

so if a tuple t is computed at iteration n − 1 but not at iteration n, where the fixpoitn is

reached, the resulting database instance will not contain t. The oversimplified evaluation

algorithm is as follow:

def eval_rules(edb, rules):

db = edb

do

db = apply_rules(rules, db)

while db does not change

This is a fundamental difference between Rel and Soufflé: in Soufflé, even if the rules are not

monotonic, one has to explicitly use subsumptions to remove an old tuple. The oversimplified

evaluation algorithm of Soufflé is as follows:

def eval_rules(edb, rules):

db = edb
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do

new_db = apply_rules(rules, db)

db = db + new_db

while delta does not change

As we have seen, this can sometimes be a headache because one need to explicitly remove

obsolete tuples. In comparison, Rel’s non-monotonic semantics allows us to write iterative

algorithms that are not monotonic (with regard to tuple inclusion) much easier.

Rel also has an expressive set of language features: relations can be defined in place

using comprehension syntax, are easily composible via comma (,) operator (for cartesian

product) and semicolon (;) operator (for union), and can be used as arguments to higher-

order functions like hash; universal and existential quantifiers can be nested; and there are

rich syntactic sugars for relational programming, e.g., R[a] means b: R(a, b). This section

will not attempt to cover all the features of Rel; instead, we will introduce each language

feature of Rel as we use them.

2.2.1 Representing terms

The first issue we address is the representation of terms in Rel: for a relation R, we say

e-node f(x1, . . . , xn) with id i is in R if R(: f, x1, . . . , xn, i). : f is a compile-time literal

that is compiled into the metadata of the relation, such that R : f is a “sub-relation” of R

and can be visited as R[: f ] as a normal get-by-key operation. We also define the “natural”

e-class id of an e-node, which is also the initial e-class id of an e-node to be the hash value

of tuple (: f, x1, . . . , xn). The following Rel code populates ∑
i=1 nvi

def expr_prep = hash[{:var, range[1, N, 1]}]

def expr_prep = hash[{:add, expr_prep:var[1], expr_prep:var[2]}]

def expr_prep = hash[{:add,

expr_prep:add[_, expr_prep:var[n]],

expr_prep:var[n+1]
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from n where n<N}]

def expr = expr_prep

hash is a higher-order function that takes a relation with arity n, and produce a new

relation with arity n+ 1, where the first n columns are from the input relation, and the last

column is the hash value of each tuple.

2.2.2 Representing the Union-Find Data Structure

One critical distinction between the encoding in Rel and in Soufflé is that Rel does not

have built-in efficient equivalences. Näıvely encoding the equivalence relation as a transitive,

reflexive, and symmetric relation is possible, but slow. It turns out that it is possible to

encode the union-find data structure in Rel, by declaratively stating the properties of each

component.

There are three key components for a union-find data structure in our encoding: link,

which link children and parents in the union-find tree; find, which returns the canonical id

(i.e., root) for the given id; and finally merge, which is a list of pairs that records the history

of operations over the union-find. In each iteration, the union-find (namely find and link)

will be built according to merge from scratch. Similar to our Soufflé encoding, the root is

the id with smallest value in an e-class.

Let us start by defining find: the output of find will be the minimum of itself and find

of its parent. This gives the following declarative rule:

def find = a in last[expr]: to[min[fr[a]; fr[find[link[a]]]]]

where last[expr] gives all the e-class ids and fr and to are helper functions to convert

from and to hash values:

@inline def to = uint128_hash_value_convert

@inline def fr = hash_value_uint128_convert
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Similarly, there are three cases for find: because of path compression, the link of an id

is either itself (when its root), the find of its parent, or find[b] when the id is equal to

find(a) for some merge history merge(a, b). This gives the following rule.

def link = l in last[expr]: to[min[

fr[l];

fr[find[l]];

(fr[find[b]] from a, b where l = find[a] and merge(a, b));

(fr[find[b]] from a, b where l = find[a] and merge(b, a))]]

In fact, link and find will converge at the fixpoint: By definition of find, (1)

find[a] <= find[link[a] and (2) find[a] <= a, and by definition of link, (3)

link[a] <= find[a] and (4) link[a] <= a. By (3) and (1), we have

link[a] <= find[a] <= find[link[a]]

By (2), find[link[a]] <= link[a]. Thus, link[a] <= find[a] <= link[a], which im-

plies find[a] = link[a] for all a.

2.2.3 Representing Rewrites

Finally, we turn our attention to the actual representation of rewrites. This is easier to do

than in the Soufflé encoding, because we do not need to worry about removal of obsolete

tuples (e.g., using subsumptions).

We use three relations to represent a term for different purposes. All three relations will

have the same first n arguments but differ in their last column, which is used for representing

different ids.

• The last column of expr is the natural id of the e-node, i.e., the hash value of its

function symbol and its children;
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• The last column of rels is the canonical id of that e-node, given by the find proce-

dure. Moreover, rels will only contain canonical e-nodes. This is the relation we do

e-matching on;

• Finally, the last column of rels_todo documents e-class ids that need to be merged

later.

We first define rels, which is the easiest among the three representations. Essentially,

rels canonicalize each e-node from expr:

def rels:add = find[x], find[y], find[xy]

from x, y, xy

where expr:add(x, y, xy)

def rels:var = v, find[c] from v, c

where expr:var(v, c)

The definition of expr and rels_todo are query dependent: besides the initially popu-

lated tuples in expr, all the tuples in expr and rels_todo are directly produced by rewrites.

First, for each rewrite, we need to insert the (potentially) new e-nodes (with its natural ids)

into the expr relation:

// comm

def expr = hash[{:add, (x, y: rels:add(y, x, _))}]

// assoc

def expr = hash[{:add, (y, z: rels:add(_, y, xy), rels:add(xy, z, _)

from xy)}]

def expr = hash[{:add, (x, yz: rels:add(y, z, yz), rels:add(x, y, xy),

rels:add(xy, z, _)

from xy, y, z)}]
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For commutativity, we populate x + y for each y + x found (in the canonical database).

Similarly for associativity, we populate y + z and x+ (y + z) for each (x+ y) + z found.

For rels_todo, we essentially insert into it the e-class ids from the left-hand side of the

rewrite rules, which will be the new e-class ids for the right-hand side pattern, processed by

the union-find.

def rels_todo:add(x, y, yx) = rels:add(y, x, yx)

def rels_todo:add(x, yz, xy_z) =

rels:add(y, z, yz),

rels:add(x, y, xy),

rels:add(xy, z, xy_z)

from xy, y, z

We tie the knots and define the merge function based on rels_todo. In particular we

merge ids from rels_todo with the natural id (which is known to be in the id).

def merge = id1, id2: expr:add(x, y, id1), rels_todo:add(x, y, id2) from x, y

But we are not done yet: equivalences may be introduced by canonicalization. Suppose

add(a, b, c) and add(d, e, f) are present in the database and later d is canonicalized to

a and e to b. This will effectively make the canonical database rels to have two “canonical”

ids for the same e-node, which we need to merge:

def merge = id1, id2: rels:add(x, y, id1),

rels:add(x, y, id2),

id1 != id2

from x, y

2.3 Miscellaneous

This chapter summarizes the work done during the first half of my master. Among my

collaborators, I would particularly like to thank Philip Zucker for his inspirational blog
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post on this topic and for insightful discussions. I want to also thank Martin Bravenboer

for introducing me to the Rel language and later for his guidance during my internship at

RelationalAI. It is truly an honor to work with my colleagues at RelationalAI.
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Chapter 3

EGGLOG

This chapter presents an semi-formal introduction on egglog, a prototype language that

attempts to generalize both Datalog and egg. Currently, only a partial implementation of

the described egglog language exists, with some deviations from the language presented here.

Why egglog? The motivation behind egglog is to find a good model for relational e-

graphs that can take full advantage of (1) performance of relational e-matching and (2)

expressiveness of Datalog, while (3) being compatiable with egg as well as (4) efficient.

This is the first approach described at the beginning of Chapter 1. Compared to the second

approach, which as we saw is limited in the kind of optimization it can perform, this approach

is more principled and fundamental.

Egglog is a dialect of Datalog, so it supports various reasoning expressible in Datalog.

A rule has the form head1, ..., headn :- body1, ..., bodyn. For example, below is a

valid egglog program:

rel link(string, string) from "./link.csv".

rel tc(string, string).

tc(a, b) :- link(a, b).

tc(a, b) :- link(a, c), tc(c, b).

However, Datalog by itself is not that interesting. So for the first part of this chapter, we

will instead focus on the extensions that make egglog interesting. Next, we will give some

examples and show why egglog generalizes egg. We will also try to develop the operational

and model semantics of egglog.



34

3.1 Introduction to Egglog

3.1.1 User-defined sorts and lattices

In egglog, every value is either a (semi)lattice value or a sort value. Lattices in egglog are

algebraic structures with a binary join operator (∨) that is associative, commutative, and

idempotent and a default top > where >∨ e = > for all e. For example, standard types like

string, i64, and u64 in egglog are in fact trivial lattices with s1 ∨ s2 = > for all s1 6= s2.

In egglog, > means unresolvable errors. Users can define their own lattices by providing a

definition for lattice join.

Similarly, users can define sorts. Unlike lattices, sorts are uninterpreted. As a result,

sort values can only be created implicitly via functional dependency. We will go back to this

point later.

3.1.2 Relations and Functional Dependencies

Relations can be declared using the rel keyword. Moreover, it is possible to specify a

functional dependency between columns in egglog. For example,

sort expr.

rel num(i64) -> expr.

declares a sort called expr and a num relation with two columns (i64, expr). In the num

relation, each i64 uniquely determines the remaining column (i.e., num(x, e1) and num(x,

e2) implies e1 = e2). The num relation can be read as a function from i64 to values in

expr. Similar declarations are ubiquitous in egglog to represent sort constructors.

As another example,

rel add(expr, expr) -> expr.

declares a relation with three columns, and the first two columns together uniquely deter-

mines the third column. This represents a constructor with two expr arguments.

Users can introduce new sort values with functional dependencies. Example:
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num(1, c). % equivalently, num(1, _).

num(2, d).

add(c, d, e) :- num(1, c), num(2, d).

This program is interesting and its semantics deviates from the one in standard Datalog.

In standard Datalog, this program will not compile because variable c in the first rule, d in

the second rule, and e in the third rule are not bound. However, this is a valid program

in egglog. Thanks to functional dependency, variables in the head do not necessarily have

to be bound in the bodies. Variables can be unbound as long as they can be inferred from

the functional dependency. The above egglog program is roughly equivalent to the following

Datalog program:

num(1, c) :- !num(1, _), c = new_expr().

num(2, d) :- !num(2, _), d = new_expr().

add(c, d, e) :- num(1, c), num(2, d), !add(c, d, _), e = new_expr()

Negated atoms like !num(1, ) is necessary here because otherwise it will inserts more than

one atoms matching num(1, ), which violates the functional dependency associated to the

relation.

The above example egglog program can also be written into one single rule with multiple

heads:

add(c, d, e), num(1, c), num(2, d).

% roughly equivalent to

% add(c, d, e), num(1, c), num(2, d) :- !num(1, _), !num(2, _),

% c = new_expr(),

% d = new_expr(),

% !add(c, d, _),

% e = new_expr().

Egglog also supports the bracket syntax, so the last program can be further simplified to:
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add[num[1], num[2]].

The bracket syntax will implicitly fill the omitted column(s) with newly generated vari-

able(s). If the atom is nested within another term, the nested atom will be lifted to the

top-level, and the generated variable(s) will take the original position of the atom. Here is

another example of the bracket syntax:

ans(x) :- xor[xor[x]].

% expands to

% ans(x) :- xor[y, z], xor(x, y, z)

% which expands to

% ans(x) :- xor(y, z, _), xor(x, y, z)

% this rule can be thought as

% for any expr x, y where \texttt{y xor (x xor y)}

% is present in the database, collect x as the result.

Finally, in equational reasoning a la egg, it is common to write rules like ”for every (a +

b) + c, populate a + (b + c) on the right and make them equivalent”. This rule will look

like the following:

add(a, add[b, c], id) :- add(add[a, b], c, id).

Egglog further has a syntactic sugar for these equational rules: head := body if body1

... bodyn where both head and body should use the bracket syntax and omit the same

number of columns. The if clause can be omitted. Egglog will expand this syntactic sugar

by unfolding the top-level bracket in head and body with the same variable(s):

add[b, a] := add[a, b].

% unfolds to add(b, a, id) :- add(a, b, id).

add[a, add[b, c]] := add[add[a, b], c].

% unfolds to add(a, add[b, c], id) :- add(add[a, b], c, id).
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num[1] := div[a, a] if num(x, a), x != 0.

% unfolds to num(1, id) :- div(a, a, id), num(x, a), x != 0.

Note the equational rules may introduce functional dependency violation; for instance,

last rule may cause multiple tuples to match num(1, ), yet the first column should uniquely

determines the tuple. We will discuss more about how we resolve this kind of violations The

essential idea is that, if two sort values are present with the same primary key, then the

two sort values must be equivalent, whereas if two lattice values are present with the same

primary key, the new, unique lattice value should generalize the two values, i.e., it will be

the least-upper bound of those lattice values.

3.1.3 Relations with lattices

The example relations we see so far mostly center around sort values. However, it is also

possible and indeed very useful to define relations with lattices:

rel hi(expr) -> lmax(-2147483648).

rel lo(expr) -> lmin(2147482647).

To define a lattice column, a default value need to be provided in the relation definition. The

default value is not a lattice bottom: the bottom means do not exist. Meanwhile, the lattice

top means there are conflicts. It is also possible for default value to refer to the determinant

columns:

rel add1(i: i64) -> i64(i + 1).

The column initialization syntax should be reminiscent of C++’s member initializer lists.

In the above example, lo and hi together define a range analysis for the expr sort. This

in facts generalizes the e-class analyses in egg. Here are some rules for hi and lo:

hi(x, n.into()) :- num(n, x).

lo(x, n.into()) :- num(n, x).

https://en.cppreference.com/w/cpp/language/constructor
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lo(nx, n.negated()) :- hi(x, n), neg(x, nx).

hi(nx, n.negated()) :- lo(x, n), neg(x, nx).

lo(absx, 0) :- abs(x, absx).

lo[absx] := lo[x] if abs(x, absx), lo[x] >= 0.

hi[absx] := hi[x] if abs(x, absx), lo[x] >= 0.

lo(xy, lox + loy) :- lo(x, lox), hi(y, loy), add(x, y, xy).

% can be further simplified to

% lo[xy] := lo[x] + lo[y] if add(x, y, xy)

Note here instead of lo(neg[x], n.negated()) :- hi(x, n)., we put the neg atom

to the right-hand side and write lo(nx, n.negated()) :- hi(x, n), neg(x, nx). There

are some nuanced differences between the two rules. This rule, besides doing what the second

rule does, always populates a neg tuple for each hi tuple even when it does not exist, so the

first rule can be viewed as an ”annotation-only” version of the first rule, which is usually

what we want.

The last example shows e-class analyses in egglog is composable (i.e., each analysis can

freely refer to each other). This is one of the reason why we believe egglog generalizes e-class

analyses. Moreover, they can also interact with other non-lattice relations in a meaningful

way:1

rel geq(expr, expr).

% ... some arithmetic rules ...

% need to convert to int because they are from different lattices

geq(a, b) :- lo[a].to_int() < hi[b].to_int().

% ... other user-defined knowledge about geq

1The last rule in this example has a single variable on the left-hand side, but the above mentioned
syntactic expansion for := does not apply to this case. The rule is indeed equivalent to abs(x, x) :-
abs[x] if geq(x, num[0]).
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% x and abs[x] are equivalent when x > 0

x := abs[x] if geq(x, num[0])

Diverging a little bit, it is even possible to write the above rules without using lattice

relations:

sort bool.

rel true() -> bool.

rel false() -> bool.

rel geq(expr, expr) -> bool.

% for each abs[x] exists, populate geq[x, 0],

% in the hope that later

% it will be "in the same e-class" as true[].

geq[x, 0] :- abs[x]

geq[numx, 0] := true[] if num(x, numx), x > 0.

geq[xx, 0] := true[] if mul(x, x, xx).

% if x > 0 and y > 0 are both equivalent to true,

% then x + y > 0 is also equivalent to true.

geq[xy, 0] := true[]

if add(x, y, xy),

geq(x, 0, true[]),

geq(y, 0, true[])

geq[xxyy, 0] := true[] if add(mul[x, x], mul[y, y], xxyy).

% ... other reasoning rules...
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% if x>0 is equivalent to true,

% every abs[x] in the database should be equivalent to x

x := abs[x] if geq(x, 0, true[])

The above program can be seen as implementing a small theorem prover in egglog. When-

ever it sees abs[x], a query about x >= 0 will be issued to the database. If later x >= 0 is

proven to be equivalent to true, a distinguished sort value, abs[x] will be put in the same

e-class as x.

All these rewrite will be very hard to express in egg.

3.1.4 Functional Dependency Repair

FDs can be violated: what if the user introduced two values for the same set of determinant

columns? In this case, we need to repair the FDs. We have seen such examples many times

in previous sections. For example, rules like R[x1, ..., xk] := ... will add new values to

R indexed by x1, ..., xk, and it is likely that there are already other tuples with the same

prefix x1, ..., xk. These rules may potentially cause violation of functional dependencies.

In general, there are two kinds of violations:

• Case 1: If the dependent column is a sort value, egglog will unify the two sort values

later in the iteration. We can think of a term of a sort in egglog as a constant in

some theories, which refers to some element in the model. But we don’t know which

element it refers to. However, by repairing functional dependencies, we can get some

clues about what the structure will look like. Consider the following program

rel add(expr, expr) -> expr.

rel num(i64) -> expr.

% add the fact 2 + 1, where the last column is auto-generated.

add[num[2], num[1]].
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% add the fact 2+1, but the last column is add[num[1], num[2]]

% (add[num[1], num[2]] is created on the fly because

% it occurs at the left hand side.)

add(num[2], num[1],

add[num[1], num[2]]).

Because now (without repairing) add[num[1], num[2]] will contain two rows. The

functional dependency is violated. If we think of rewriting under functional depen-

dency as a process of finding a model for the sort, then what do we learn from this

violation? We learned that, to respect the functional dependency, the two sort val-

ues must be the same thing! Therefore the expr originally referred by add[num[2],

num[1]] and by add[num[1], num[2]] will be treated as the same expr and no longer

be distinguishable in egglog! As we will show later, when a egglog program reaches the

fixpoint, it produces a valid, minimal model for the relations and the sorts such that

the rewrite rules and the functional dependencies are both respected.

• Case 2: What if the dependent column is a regular type as a Rust struct or an integer?

Well, we also need to unify them, but in a different way. The idea here is to describe

these values with a algebraic structure, which in this case is a lattice. A lattice has

a bottom (means does not exist) and a top (means conflicts). Similar to Flix, lattice

values will grow by taking the least upper bound of all the violating tuples. In that

sense, egglog also generalizes Flix (as is described in the Madsen et al. (2016)).

3.1.5 Seamless Interop with Rust

This proposed extension takes inspiration from recent work on Ascent(Sahebolamri et al.,

2022), an expressive Datalog engine that has seamless integration with the Rust ecosystem.

One interesting feature of Ascent is that it allows first-class introspection of the column



42

values. Ascent use this feature to support features like first-class environment (this and the

next example are both from page 4 of the Ascent paper; comments are mine):

sigma(v, rho2, a, tick(e, t, k)) <--

sigma(?e@Ref(x), rho, a, t), // the environment rho is enumerated here

store(rho[x], ?Value(v, rho2)), // rho[x] is used as an index for store

store(a, ?Kont(k));

One thing though is that Ascent allows enumerating structs as a relation with the for

keyword. For example:

sigma(v, rho2, store, a, tick(v, t,k)) <--

sigma(?Ref(x), rho, store, a, t),

// enumerating store[&rho[x]]

for xv in store[&rho[x]].iter(), if let Value(v,rho2) = xv,

// enumerating store[a]

for av in store[a].iter(), if let Kont(k) = av;

This makes Ascent have a more macro-y vibe, which makes sense since the whole Ascent

frontend is based on Rust’s procedural macros. However, I think the similar can be easily

achieved inside the relational land, so in a full-fledged relational language like egglog, the

for syntax may not be necessary.

Seamless interop with Rust is in general very powerful. In fact, we have already used this

feature a lot. For example, lattices in egglog are structs defined in Rust that implements

certain traits. So rules like hi(x, n.into()) :- num(n, x)., will call methods in the

corresponding struct (e.g., n.into()).

In general, these user-defined functions introduced functional dependencies from do-

mains of functions to their range. For example, rule hi(x, n.into()) :- num(n, x). can

be viewed as hi(x, n into) :- num(n, x), into rel(n, n into) with functional depen-

dency from n to n into. Advanced join algorithms like worst-case optimal joins can leverage

these functional dependencies to optimize the query.
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3.2 The Model Semantics of Egglog and its Evaluation

In this section, I will focus on the problem of how to formalize egglog and how to evaluate

egglog programs. This section will first give the model semantics of egglog. Then, I will

describe rebuilding, an essential procedure for evaluating and maintaining e-graphs, namely

rebuilding, in the egglog setting. Finally, we will discuss how egglog’s matching procedure

can benefit from semi-naive evaluation, a classic evaluation algorithm in Datalog

3.2.1 The Model Semantics

Given a schema S with functional dependencies between columns, we define the set of func-

tion symbols F = {fR,1, . . . , fR,m | R(c1, . . . , cn) → (d1, . . . , dm) ∈ S}. The universe US is

given as the set of terms constructible from constants and function symbols.

From the universe US, we define a structure M = (∼=,∆), where ∼= is a congruence

relation over US. Given a total order <, each congruence relation derives a unique mapping

λ∼= : US 7→ US that maps every term to the smallest term in its equivalence class. ∆ is

the set of tuples {ϕR ∈ P(UaR
S ) | R ∈ S}, where aR is the arity of relation R. We say

R(t1, . . . , taR
) ∈ ∆ if (t1, . . . , taR

) ∈ ϕR. R(t1, . . . , taR
) is in M , or M |= R(t1, . . . taR

), if

R(λ(t1), . . . , λ(taR
)) ∈ ∆M . Moreover, we define t1 = t2 holds in M , or M |= t1 = t2, if

λ(t1) = λ(t2).

We say M1 v M2 if M1 |= φ implies M2 |= φ for any predicate φ. v is a partial order.

We further define intersection (∼=1,∆1) u (∼=2,∆2)) to be

(∼=1 ∩ ∼=2, [λ∼=1 7→ λ∼=1∩∼=2 ]∆1 ∩ [λ∼=2 7→ λ∼=1∩∼=2 ]∆2),

where

[λ1 7→ λ2]∆ = {(λ2(u1), . . . , λ(uaR
)) | R(t1, . . . , taR

) ∈ ∆, λ1(u1) = t1, . . . , λ1(uaR
) = taR

}.

u is monotone: we have M1 uM2 vM1 and M1 uM2 vM2.
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Example 1. Suppose < is the total order of natural numbers, M1 = ({{1, 2, 3}, {4}}, {R(1, 4)}),

M2 = ({{1}, {2, 3, 4}}, {R(2, 2)}), we have ∼=M1uM2= {{1}, {2, 3}, {4}} and ∆M1uM2 =

{R(1, 4), R(2, 4)} ∩ {R(2, 2), R(4, 2), R(2, 4), R(4, 4)} = {R(2, 4)}.

A rule in egglog has the form

∃Y, S1(Y1), . . . , Sm(Ym)← R1(X1), . . . , Rn(Xn).

Thanks to the inferrable constraint, we can eliminate the existentially quantifier and the

above rule can be rewritten as first-order sentence with only universal quantifiers (TODO:

mention why we do this: because we need Y ′1 to uniquely determine ~fS1(Y ′1) and so forth)

∀X,R1(X1), . . . , Rn(Xn)→

S1(Y ′1 , ~fS1(Y ′1)), . . . , Sm(Y ′m, ~fSm(Y ′m)),

fj1(Y ′k1) = fj′
1
(Y ′k′

1
), . . . , fjp(Y ′kp

) = fj′
p
(Y ′p′

1
)

fx1(Yy1) = Xz1,w1 , . . . , fxq(Yyq) = Xzq ,wq ,

Example 2. Rule ∃y, add(β, γ, y), add(α, y, r) ← add(α, β, x), add(x, γ, r) will be rewritten

to the first-order sentence

∀α, β, γ, x, r.add(α, β, x), add(x, γ, r)→add(β, γ, fadd,1(β, γ)),

add(α, fadd,1(β, γ), fadd,1(α, fadd,1(β, γ))),

fadd,1(α, y) = r.

An egglog program is a set of rules Γ satisfying the inferrable constraint. M is a

model of Γ, denoted as M |= Γ, if every rule in Γ hold. Every model of a program Γ

also respects the functional dependency. Given a program, there always exist a satisfying

model, which can be trivially given by (∼=>,∆>), where every term in US is equivalent and

∆> = {R(c0, . . . , c0) | R(. . .)→ (. . .) ∈ S, c0 = min<(US)}.

Moreover, there is a smallest model M for every program Γ, given as the intersection of

all models Mmin =
d

M M .
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Proof. Suppose otherwise that Mmin is not a model. Then there must be some grounded rule

where the body is satisfied but some atom φ in head is not.

• If φ has the form a = b, for every valid model M = (∼=,∆), (a, b) must be in ∼=, so

(a, b) ∈∼=min. This is a contradiction.

• If φ has the form R(t1, . . . , taR
), for every valid model M , R(λ(t1), . . . , λ(taR

)) ∈ ∆M .

Therefore,

∆min ⊇
l

M

{R(λ∼=min(u1), . . . , λ∼=min(u1)) | λ∼=M
(t1) = λ∼=M

(u1), . . . , λ∼=M
(taR

) = λ∼=M
(uaR

)}

⊇
l

M

{R(λ∼=min(t1), . . . , λ∼=min(t1))}

= {R(λ∼=min(t1), . . . , λ∼=min(t1))}

This implies M |= R(t1, . . . , taR
), which is a contradiction.

Therefore, Mmin is a model.

In fact, the result of evaluating an egglog program using the abstract algorithm below, if

terminates, is the smallest model of Γ.

def run(Gamma):

M = (Id, {})

while not fixpoint:

newM = M

for r in Gamma:

for grounded s in match(r, M):

newM = apply(newM, s.rhs)

M = newM
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3.2.2 The Detailed Evaluation Algorithm

Following the idea of the above abstract algorithm, here we present a detailed evaluation

algorithm. This algorithm is not yet fully implemented, and it is a sketch of what I think

should work. The readers should read this section with a grain of salt, since there is absolutely

no correctness guarantees. The evaluation algorithm of egglog programs consists of two

parts. The core of the evaluation is the invariant-maintaining rebuilding algorithm, which

is inspired both by the rebuilding algorithm of egg and by the evaluation algorithm of the

chase. The second part involves matching and applying egglog rules. Applying egglog rules

is efficient. In the chase’s terminology, thanks to the above mentioned inferrable constraint,

rule application in egglog is able to utilize functional dependencies to avoid to generate

unnecessary nulls. Moreover, because egglog programs are monotonic computations over the

relational database in nature, they can benefit from the semi-naive evaluation algorithm of

Datalog. We call this semi-naive matching, which can be seen as a further improvement over

relational e-matching (Zhang et al., 2022).

The main algorithm will iteratively apply batch_rewrite, which will apply the rules

in batches and will return false if no updates to the database is found. After rule firing,

rebuild will be called to restore the functional dependencies.

def run(pats, DB, max_iter):

for iter in range(max_iter):

if !batch_rewrite(pats, DB):

return

rebuild(DB)

Rebuilding

The rebuilding algorithm, shown below, is similar to the one used in egg, but generalizes it

since it handles functional dependencies beyond congruence:

todo = mk_union_find()
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domain = mk_set()

def union_sort(s1, s2):

todo.union(s1, s2)

domain.add_all([s1, s2])

def refresh_todo():

todo = mk_union_find()

domain = mk_set()

def on_insert(R, tup):

# find the tuple by its determinant columns

orig_tup = R.find_by_determinant(tup.det)

if orig_tup is None:

R.insert(tup)

else:

# enumerate each dependent column

for c1 in tup.dep:

col = c1.col

c2 = orig_tup[col]

if col.is_sort():

s1 = todo.get_or_create(c1)

s2 = todo.get_or_create(c2)

union_sort(s1, s2)

else:

orig_tup.set_col(col, c1.lat_max(c2))

def normalize(tuple, union_find):
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return tuple.map(lambda val:

union_find.get_or_default(val, default = val))

def rebuild(DB):

while not todo.is_empty():

# take todo into the local scope

union_find = todo

refresh_todo()

to_remove = mk_set()

to_insert = mk_set()

for val in domain:

for R in DB:

for col in R.cols:

for tup in R.index_by(col = col, val = val):

new_tup = normalize(tup, union_find)

if new_tup != tup:

to_remove.add((R, tup))

to_insert.add((R, new_tup))

DB.remove_all(to_remove)

# may trigger on_insert

DB.insert_all(to_insert)

Applying rewrite rules

The rule firing of egglog can be viewed as a combination of rule firing in the chase (for sorts)

and in Flix (for lattices)
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def batch_rewrite(pats, DB):

to_insert = mk_set()

for (lhs, rhs) in pats:

for subst in match(DB, lhs):

subst = chase(DB, subst, lhs, rhs)

for (R, atom) in rhs:

to_insert.add((R, atom.apply(subst)))

DB.insert_all(to_insert)

return to_insert.is_empty()

def chase(DB, subst, lhs, rhs):

shouldContinue = True

while shouldContinue:

shouldContinue = False

for atom in rhs:

det_vars = atom.get_det_vars()

if det_vars.is_subset_of(subst.get_domain()):

shouldContinue = True

R = DB.get_rel(atom.rel)

det = det_vars.apply(subst)

tup = R.find_by_determinant(det)

for var in atom.get_dep_vars():

col = var.col

if var.is_sort():

if tup is None: continue

value = tup.get_by_col(col)
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sort_update(subst, var, value)

else:

value = tup is None ? col.lat_init(det)

: tup.get_by_col(col)

lat_update(subst, var, value)

for var in rhs.get_all_vars():

if !subst.contains(var):

assert var.is_sort():

subst[var] = new_sort_value(var.sort)

def lat_update(subst, var, value):

if subst.contains(var):

subst[var] = subst[var].lat_max(value)

else:

subst[var] = value

def sort_update(subst, var, value):

if subst.contains(var):

union_sort(subst[var], value)

else:

subst[var] = value

Semi-Naive Matching

One of the bottleneck in evaluating egglog programs is matching the left-hand side. Since

we are matching over a relational representation of the e-graphs, we are already doing is

already relational e-matching. However, we can go one step further: Let DB’ be the database

of tuples that are not touched in the current iteration of rewrite. DB’ by itself will not
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produce any interesting new tuples; it has to join with newly generated tuples (i.e., the

delta database). This is exactly the semi-naive evaluation algorithm of Datalog. We call

this similar optimization in egglog semi-naive matching. This optimization will be tricky to

do over e-graph’s DAG representation, yet is fairly obvious in egglog’s full-fledged relational

representation.
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Chapter 4

RELATED WORK

4.1 E-graphs

E-graphs are first introduced in Greg Nelson’s seminal thesis (Nelson, 1980) in late 1970s

as a way of effectively deciding the theory of equalities. A more efficient algorithm is later

introduced by Downey et al. (1980) and the time complexity of this algorithm is analyzed.

E-graphs are then used at the core of various theorem provers and solvers (Detlefs et al., 2005;

de Moura and Bjørner, 2008; Barrett et al., 2011). In the 2000s, e-graphs are repurposed

for program optimization Tate et al. (2009); Joshi et al. (2006). The technique, known as

equality saturation, repeatedly performs non-destructive rewriting on the e-graphs to grow

a compact space of equivalent programs. An extraction procedure is then applied to extract

the optimal program. In essense, equality saturation mitigates the phase-ordering problem

by keeping all programs. This inspires later work on using e-graphs for translation validation

(Stepp et al., 2011), floating-point arithematic (Panchekha et al., 2015), semantic code search

(Premtoon et al., 2020), and computer-aided design (Wu et al., 2019). However, a generic

framework for e-graphs is not yet available, and developing e-graphs–based applications

requires implementing e-graphs from scratch and is therefore a tedious effort. Recently, a

generic framework for e-graphs, called egg, is developed (Willsey et al., 2021). As a result,

many projects sprang up building domain-specific projects using e-graphs, including rewrite

rule synthesis (Nandi et al., 2021), machine learning compiler (Yang et al., 2021; Smith

et al., 2021), relational query optimization (Wang et al., 2020), and digital signal processing

vectorization (VanHattum et al., 2021).

The connection between e-graphs and relational databases. is first studied in our earlier

work on relational e-matching (Zhang et al., 2022). In relational e-matching, we proposed
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to view an e-graph as a relational database, which allows us to make e-matching orders of

magnititude faster and prove desired theoretical properties. However, to use this technique,

one has to keep both the e-graph and its relational representation and convert back and

forth, which limits its practical adoptions. We build on this work, which only takes a static

relational snapshot of e-graph each time, and explore how e-graphs as a relational database

will behave dynamically. This saves us from the labor of keeping and syncing between the

two e-graph representations and further exploits the benefits of the relational e-matching

approach.

Many works on improving e-graphs focus on the efficiency and usability of e-graphs. Re-

lational e-graphs bring a new perspective to some of these works. For example, de Moura and

Bjørner (2007) studied the incremental maintenance problem of the e-matching procedure

and one of its standard extension called multi-patterns. Yang et al. (2021) also proposed an

algorithm to extend e-graph frameworks with multi-patterns for equality saturations. In rela-

tional e-graphs, multi-patterns are supported naturally (Zhang et al., 2022), and incremental

maintenance can be achieved using semi-näıve evaluation, which is a standard technique for

evaluating Datalog programs (Balbin and Ramamohanarao, 1987). Many applications ex-

tend the expressiveness of e-graphs by writing domain-specific analyses in a general purpose

language. For example, to reason about lambda calculus in egg, a user may want to imple-

ment an analysis that manually tracks the set of free and bound variables (Willsey et al.,

2021) in Rust. Such analyses can be written as rules in pure relational e-graphs. For some

other works, the problem of finding and understanding its relational dual is still open to

future research. For instance, applications like SMT solvers not only want to know if two

terms are equivalent, but also why they are equivalent. Techniques are developed to generate

proofs for equivalences in e-graphs (Nieuwenhuis and Oliveras, 2005). It is speculated that

proofs for congruence closure in relational form may just be database provenance (Green

et al., 2007; Zhao et al., 2020). Moreover, scheduling is a critical component of equality sat-

uration (Willsey et al., 2021), and a good scheduling algorithm is a key enabler of scalable

equality saturations. However, for relational languages like Datalog, the scheduling problem
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is less studied, because Datalog programs are usually run to fixpoint, while the fixpoint for

equality saturation is usually infinitary. A future direction is to study the scheduling problem

for relational e-graphs.

Other data structures for compact program representation have also been long studied in

the literature for decades, in particular version space algebras (VSAs) (Wolfman et al., 2001;

Polozov and Gulwani, 2015) and finite tree automata (Wang et al., 2017a,b). Recently, it is

shown that both e-graphs and VSAs are special cases of finite tree automata (Koppel, 2021).

A natural question is therefore if we can encode VSAs, finite tree automata, and operations

over them in a relational approach, and how we can possibly benefit from such an encoding

for tasks like program synthesis and program optimization.

4.2 Relational databases and Datalog

Our work is closely related to works on Datalog and relational database. Relational e-graphs

are directly inspired by work on data dependencies and the chase. Equality generating de-

pendencies (EGDs) are data dependencies of the form ∀~x.λ(~x)→ xi = xj, which asserts the

equality between terms under conditions given by predicate λ. EGDs generalizes the con-

gruences in equality saturation, e.g., the congruence property of binary operator add can be

written as ∀x, y, z1, z2.add(x, y, z1), add(x, y, z2) → z1 = z2. Tuple generating dependencies

(TGDs) are another kind of data dependencies of the form ∀~x, λ(~x) → ∃~y, ρ(~x, ~y), which

essentially generalizes Datalog rules with existential quantifiers in the body. TGDs general-

izes rewrite rules in equality saturation. For example, the associativity is expressed as TGD

∀x, y, xy, z, xyz.add(x, y, xy), add(xy, z, xyz) → ∃yz.add(y, z, yz), add(x, yz, xyz). The chase

is a family of iterative algorithms for reasoning about data dependencies (Deutsch et al.,

2008; Benedikt et al., 2017). Therefore, equality saturation can be effectively viewed as a

chase algorithm. As a chase procedure, equality saturation has many interesting properties

that are worth further study: While there may be many finite universal models to data

dependencies in the chase, in equality saturation, there will be at most one finite universal

model, which is the core. Moreover, equality saturation terminates if and only if there is a
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finite universal model of the given dependencies, which equality saturation will output, In

contrast, the (non-core) chase does not necessarily terminate even when a finite universal so-

lution of the input dependencies exists, or such a finite solution is very expensive to compute

(with the core chase (Deutsch et al., 2008)). A future direction is to understand equality

saturation using the theories developed in database research.

Many applications using e-graphs rely on domain-specific analyses. To express these

analyses in a generic e-graph framework, egg proposed a framework called e-class analyses.

An e-class analysis can be thought of as an aggregation of information in the correspond-

ing e-class’s e-nodes and their children’s e-class analyses. E-class analyses are interdepen-

dent, because the e-class analysis of one e-class depends on its children’s e-class analyses.

Therefore, e-class analyses can be formulated as recursive aggregates in Datalog. However,

unconstrained aggregates within recursions are dangerous, as it can lead to non-monotonic

programs and there may not be (stable) models, so in practice aggregate stratification is

encorced. Several approaches are proposed to loosen the aggregate stratification require-

ment (Ross and Sagiv, 1992; Conway et al., 2012; Abo Khamis et al., 2022b; Green et al.,

2007; Madsen et al., 2016). Among these approaches, the e-class analyses naturally matches

the lattice semantics proposed by Flix (Madsen et al., 2016), as each e-class analysis mono-

tonically maintains a lattice, which is associated with each e-class, In Flix, relations are

optionally annotated with a lattice, which aggregates over values passed it according to the

lattice join operation. Our relational e-graphs extends Flix by allowing multiple atoms in the

head. A similar lattice-based approach is studied in the BloomL language (Conway et al.,

2012).

Following relational e-matching (Zhang et al., 2022), we use worst-case optimal join for

solving queries over relational e-graphs. Different from relational e-matching, which only

needs to consider static snapshots of a relational database (i.e., no writes), we have to

also consider insertions and updates to the database. Several previous works considered

adopting worst-case optimal joins for practical systems. Two critical dimensions in the

design space is the design of indexes and query planning. For indices, EmptyHeaded only
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considers scenarios with static dataset (Aberger et al., 2017) and therefore their indexes

are read-optimized and need to be precomputed. Our context for using worst-case optimal

join requires to update the database and is therefore more similar to LogicBlox. LogicBlox

is a commercial database system that uses leapfrog triejoin (LFTJ) (Veldhuizen, 2014),

which is worst-case optimal, for its query processing (Aref et al., 2015). To support both

LFTJ and efficient updates, LogicBlox uses write-optimizied B-trees for indexes. Different

indexes are created and maintained when they are used by query plans generated from

the query optimizer. Recently, Freitag et al. (2020) implements a worst-case optimal join

inside the Umbra database system. In their design, the indices are built on-the-fly during

join processing and are optimized for fast building. This design allows efficient updates to

databases since no additional indices need to be maintained during updates.

In terms of query optimization, LogicBlox uses a sampling-based technique to pick a

good query plan. EmptyHeaded uses generalized hypertree decomposition (GHD), which

allows it to provide guarantees even stronger than those provided by standard worst-case

optimal joins. (Freitag et al., 2020) uses cardinality information to optimize its query plans,

and allows hybrid query plans that use binary joins like hash joins when it is deemed that

worst-case optimal join does not offer a benefit. Currently, the query optimizer of our

relational e-graph is relatively simple, and we hope to study and adopt techniques used in

other database systems that use worst-case optimal joins.
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Chapter 5

CONCLUSION

In previous chapters, we study a non-relational optimization to e-matching and its prop-

erties. Despite being able to optimize some queries, the non-relational e-matching is limited

by the graph representation of e-graphs and many optimizations that are easily applicable

to relational e-matching are not doable in this non-relational approach. However, the re-

lational e-matching approach only concerns the e-matching procedure and does not tell us

how to perform other operations over an e-graph relationally, Therefore, we turn our focus

to Datalog, an expressive relational language, and study approaches to encoding e-graphs

in existing Datalog systems. We present encodings in two Datalog systems, namely Soufflé

and Rel. The result is mixed: although we can express e-graphs in both systems declara-

tively, they are much slower than a mature e-graph framework like egg, partly because egg

is well optimized for congruence reasoning workload and partly because of many limitations

of the Datalog language. We therefore propose a new relational language based on Datalog

with first-class congruence reasoning. We give an introduction to the language prototype

and described its evaluation algorithm and model semantics, and a system for the proposed

language is in active development.

Although we have settled on the idea of building a relational language with first-class

support of congruence, there are still more questions awaiting future work.

What will scheduling and proofs look like for this relational language? Scheduling is less

concerned for traditional Datalog systems, since Datalog rules are usually run to saturation,

yet it is critical to the performance of egg. A good scheduling algorithm can make egg

to discover desired facts order of magnititude faster, and a näıve scheduling algorithm may

spend the majority of its time populating facts that are hardly useful. In egg, rule scheduling
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is relatively easy because they only need to consider equational rewrite rules. However, for

relational e-graphs, their language is a superset of Datalog, which makes rule scheduling

more complicated. More importantly, e-class analyses, which are usually expressed as custom

Rust code, are now also expressed as rewrite rules. However, different from these equational

rewrite rules for “growing” an e-graph, which usually are non-terminating, e-class analyses

are usually run to saturation (even though there are cases e-class analyses can be non-

terminating). Rule scheduling therefore may need to distinguish between different kinds

of rules and schedule differently. Proofs are in a similar situation: although algorithms

have been devised for fast and quality proof generation, they work exclusively over e-graph

operations. For them to work for relational e-graphs, it is necessary to study situations

beyond e-class merges. The research question here is essentially proof generation for data

dependencies (i.e., tuple-generating depednencies and equality generating dependencies).

What are the theoretical connections between relational e-graphs and well-established pro-

cedures like SMT solving and the chase? Chapter 4 hinted as the possible connections

between relational e-graphs and the chase. This allows us to study relational e-graphs from

a theoretical perspective using techniques established in the chase. Moreover, e-graphs bear

many connections with theory solving and are originally proposed to solve the theoy of equal-

ities. Relational e-graphs make one step further to also allow predicates to be expressed as

relations. This makes our surface language strikingly similar to the textual language SMT

solvers use. One key difference is that SMT solvers support backtracking and therefore dis-

junction, which relational e-graphs do not support. In fact, a key characteristic of both

traditional e-graphs and relational e-graphs is their monotonicity. Yet the question remains

what other potential semantic differeces are or if we are essentially building an efficient

non-disjunctive SMT solver.

What are the potential uses of relational e-graphs One of the motivation for relational

e-graphs is the lack of expressivity in traditional e-graphs beyond equational reasoning. Rela-

tional e-graphs supplement traditional e-graphs with the capability to express non-equational

reasoning. The question is therefore what new applications this new expressive power enables
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the developers to build. Currently, we are working on using relational e-graphs to write type

inference algorithms for Hindley-Milner type systems, to write solvers for algebraic equa-

tions, and to write interval analyses for arithematic tools like Herbie. A future direction is

to find new problem domains where egglog can be used—we have built the correct hammer,

but where are the nails?

How should semi-näıve evaluation be implemented for this language and does it provide

significant speedup? Semi-näıve evalaution is well-known in the Datalog literature, and a

similar technique for e-graph is proposed in literature called incremental e-matching. While

incremental e-matching is complicated and does not necessarily work for the intensive up-

date scenarios of equality saturation, semi-näıve may just work. However, as we have not

implemented semi-näıve evaluation yet, it is unclear what it takes to implement it and to

what extent it can bring speedup, if any.

How does the performance of relational e-graphs compare to that of traditional e-graphs?

Finally, we have not benchmarked the new relational e-graphs we are building against tradi-

tional e-graphs. My hypothesis is that theoretically relational e-graphs should have similar

or even better performance compared to traditional e-graphs, since the indices a traditional

e-graph rely on can be easily expressed relationally. However, to achieve this practically

requires a fair amount of engineering efforts.

All these questions have not been fully answered yet. However, I believe our design of

egglog and the accompanying egg-smol1 implementation are the first steps to answering these

important questions.

1https://github.com/mwillsey/egg-smol.
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