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This paper 
Defines a rigorous semantics to Equality Saturation (EqSat).


Studies EqSat in relationship to Term Rewriting and the Chase.


Proves the undecidability of EqSat termination in three cases.
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Problem: (a−1 ⋅ b−1)−1 ?≈ b ⋅ a
Yes. 
(a−1 ⋅ b−1)−1 → (b−1)−1 ⋅ (a−1)−1

→ b ⋅ (a−1)−1

→ b ⋅ a



Program optimization with term rewriting

5



Program optimization with term rewriting
Program Optimization

5



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C

5



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2)



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2 ?



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

Term rewriting is greedy!

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2 ?



Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms , 

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program


 


     where 

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

Term rewriting is greedy!

(a × 2) ÷ 2

Equality Saturation is an algorithm to efficiently 
explore the program space defined by rules.

a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2 ?
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Properties of EqSat

• (Inflationary) .G ⊑ EqSat(R, G)
• (Finite convergence)  

If  is finite, Equality 
Saturation converges in a finite 
number of steps.

EqSat(R, G)
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• If , then .


• If , then .

R s ∈ TΣ G = EqSat(R, s)
s →*R t s ≈G t

s ≈G t s ↔*R t

• If  is bidirectional, , ,  coincide.


• In this case, EqSat semi-decides the word problem.

R →*R ≈G ↔*R
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The chase sequence needs to 
apply EGD often enough

We build an entire system out of this idea!
(Zhang et. al. 2023) 

• Great speedup: Query optimization, semi-naive 
evaluation, worst-case optimal join, … 

• New expressive power: Multi-pattern rules, 
monotonic aggregation, …



Termination Theorem

• (Single-instance) Does EqSat terminate with for a single term ?

• Recursive enumerable (R.E.)—complete.
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• (All-term) Does EqSat terminate for all ?


• -complete.

t

G

t ∈ TΣ

Π2

13

Strictly harder than R.E.

More details in the paper!



Summary

• The fixpoint and model semantics of 
Equality Saturation


• Connections to Term Rewriting and 
the Chase


• Undecidability of Termination

• Open problems

• Extraction 

• Provenance
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Also check out the egglog system! 

GitHub: @egraphs-good/egglog


