
Semantic Foundations of
Equality Saturation

Dan Suciu1, Remy Wang2, Yihong Zhang1

1 University of Washington 2 University of California, Los Angeles

1

Equality Saturation:
A general framework for program optimization

2

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

2

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

• Adopted in 50+ projects since then.

2

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

• Adopted in 50+ projects since then.

2

`

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

• Adopted in 50+ projects since then.
• Thriving community

• Zulip online chat

• Monthly community meetings

• Annual workshops

2

`

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

• Adopted in 50+ projects since then.
• Thriving community

• Zulip online chat

• Monthly community meetings

• Annual workshops

2

`

egraphs.org

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

• Adopted in 50+ projects since then.
• Thriving community

• Zulip online chat

• Monthly community meetings

• Annual workshops

2

`

egraphs.zulipchat.com

egraphs.org

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

• Adopted in 50+ projects since then.
• Thriving community

• Zulip online chat

• Monthly community meetings

• Annual workshops

2

`

egraphs.zulipchat.com

egraphs.org

Equality Saturation:
A general framework for program optimization

• Invented in 1970s and 2000s and
repopularized in 2020.

• Adopted in 50+ projects since then.
• Thriving community

• Zulip online chat

• Monthly community meetings

• Annual workshops

2

`

egraphs.zulipchat.com

egraphs.org

Database theory community can help!

This paper
Defines a rigorous semantics to Equality Saturation (EqSat).

Studies EqSat in relationship to Term Rewriting and the Chase.

Proves the undecidability of EqSat termination in three cases.

3

The word problem and term rewriting

4

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

4

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

4

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))

4

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))
• The (ground) word problem
• Input: and

.
E = {s1 ≈ t1, …}

u, v ∈ TΣ

• Ask: .u ?≈E v

4

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))
• The (ground) word problem
• Input: and

.
E = {s1 ≈ t1, …}

u, v ∈ TΣ

• Ask: .u ?≈E v
• Undecidable in general.

4

• Term rewriting for word problem:

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))
• The (ground) word problem
• Input: and

.
E = {s1 ≈ t1, …}

u, v ∈ TΣ

• Ask: .u ?≈E v
• Undecidable in general.

4

• Term rewriting for word problem:

• Use a Term Rewriting System (TRS)
capturing axioms .

R
E

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))
• The (ground) word problem
• Input: and

.
E = {s1 ≈ t1, …}

u, v ∈ TΣ

• Ask: .u ?≈E v
• Undecidable in general.

4

• Term rewriting for word problem:

• Use a Term Rewriting System (TRS)
capturing axioms .

R
E

• Apply to and and check if
.

→R u v
∃w . u →*R w ←*R v

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))
• The (ground) word problem
• Input: and

.
E = {s1 ≈ t1, …}

u, v ∈ TΣ

• Ask: .u ?≈E v
• Undecidable in general.

4

• Term rewriting for word problem:

• Use a Term Rewriting System (TRS)
capturing axioms .

R
E

• Apply to and and check if
.

→R u v
∃w . u →*R w ←*R v

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))
• The (ground) word problem
• Input: and

.
E = {s1 ≈ t1, …}

u, v ∈ TΣ

• Ask: .u ?≈E v
• Undecidable in general.

4

Problem: (a−1 ⋅ b−1)−1 ?≈ b ⋅ a

• Term rewriting for word problem:

• Use a Term Rewriting System (TRS)
capturing axioms .

R
E

• Apply to and and check if
.

→R u v
∃w . u →*R w ←*R v

The word problem and term rewriting

• Signature .Σ := {f1, f2, …}

• Patterns for set of vars .TΣ(V) V

• Ground terms .TΣ (:= TΣ(∅))
• The (ground) word problem
• Input: and

.
E = {s1 ≈ t1, …}

u, v ∈ TΣ

• Ask: .u ?≈E v
• Undecidable in general.

4

Problem: (a−1 ⋅ b−1)−1 ?≈ b ⋅ a
Yes. 
(a−1 ⋅ b−1)−1 → (b−1)−1 ⋅ (a−1)−1

→ b ⋅ (a−1)−1

→ b ⋅ a

Program optimization with term rewriting

5

Program optimization with term rewriting
Program Optimization

5

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C

5

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2)

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2 ?

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

Term rewriting is greedy!

(a × 2) ÷ 2 a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2 ?

Program optimization with term rewriting
Program Optimization
• Input:

• A set of axioms ,

• A program ,

• Cost function ,

E
s

C
• Output:

• Optimized program

 where

.

t = arg mint∈[s]E
C(t)

[s]E := {t ∣ t ∈ TΣ . t ≈E s}

5

Ruled-based program optimization

x × 2 → x ≪ 1

x ÷ x → 1

x × 1 → x

(x × y) ÷ z → x × (y ÷ z)

…

Term rewriting is greedy!

(a × 2) ÷ 2

Equality Saturation is an algorithm to efficiently
explore the program space defined by rules.

a × (2 ÷ 2) a × 1 a

(a ≪ 1)/2 ?

E-graphs and Equality Saturation

÷

×

a 2

6

E-graphs and Equality Saturation

÷

×

a 2

6

An E-graph

E-graphs and Equality Saturation

÷

×

a 2

Represents
(a × 2)/2

6

An E-graph

E-graphs and Equality Saturation

÷

×

a 2

Represents
(a × 2)/2

a
E-classes

E-nodes

6

An E-graph

E-graphs and Equality Saturation

÷

×

a 2

7

E-graphs and Equality Saturation

÷

×

a 2

7

÷

×

a 2

≪

1

x * 2 => x << 1

E-graphs and Equality Saturation

÷

×

a 2

7

÷

×

a 2

≪

1

x * 2 => x << 1

÷

×

a 2

≪

×

/

1

(x * y) / z => x * (y / z)

E-graphs and Equality Saturation

÷

×

a 2

7

÷

×

a 2

≪

1

x * 2 => x << 1

÷

×

a 2

≪

×

/

1

(x * y) / z => x * (y / z)

÷

×

a 2

≪

×

/

1

x / x => 1
x * 1 => x

E-graphs and Equality Saturation

÷

×

a 2

7

÷

×

a 2

≪

1

x * 2 => x << 1

÷

×

a 2

≪

×

/

1

(x * y) / z => x * (y / z)

÷

×

a 2

≪

×

/

1

x / x => 1
x * 1 => x

(a × 2) ÷ 2 ≈ (a ≪ 1) ÷ 2

E-graphs and Equality Saturation

÷

×

a 2

7

÷

×

a 2

≪

1

x * 2 => x << 1

÷

×

a 2

≪

×

/

1

(x * y) / z => x * (y / z)

÷

×

a 2

≪

×

/

1

x / x => 1
x * 1 => x

(a × 2) ÷ 2 ≈ (a ≪ 1) ÷ 2

extract() = a(a × 2) ÷ 2

E-graphs as Tree Automata

8

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

8

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

8

We allow a tree automaton to be infinite.

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

Δ =

a() → ca,
1() → c1, 2() → c2,
× (ca, c2) → c2a,
≪ (ca, c1) → c2a

÷ (c2a, c2) → c÷

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

Δ =

a() → ca,
1() → c1, 2() → c2,
× (ca, c2) → c2a,
≪ (ca, c1) → c2a

÷ (c2a, c2) → c÷

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

• A term is represented at if .t q ∈ Q t →*𝒜 q

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

Δ =

a() → ca,
1() → c1, 2() → c2,
× (ca, c2) → c2a,
≪ (ca, c1) → c2a

÷ (c2a, c2) → c÷

(a × 2) ÷ 2 →* (ca × c2) ÷ c2 → c2a ÷ c2 → c÷

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

• A term is represented at if .t q ∈ Q t →*𝒜 q

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

Δ =

a() → ca,
1() → c1, 2() → c2,
× (ca, c2) → c2a,
≪ (ca, c1) → c2a

÷ (c2a, c2) → c÷

(a × 2) ÷ 2 →* (ca × c2) ÷ c2 → c2a ÷ c2 → c÷

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

• A term is represented at if .t q ∈ Q t →*𝒜 q

• An E-graph is a reachable deterministic
tree automaton.

• E-classes = states, E-nodes = transitions

G

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

Δ =

a() → ca,
1() → c1, 2() → c2,
× (ca, c2) → c2a,
≪ (ca, c1) → c2a

÷ (c2a, c2) → c÷

(a × 2) ÷ 2 →* (ca × c2) ÷ c2 → c2a ÷ c2 → c÷

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

• A term is represented at if .t q ∈ Q t →*𝒜 q

• An E-graph is a reachable deterministic
tree automaton.

• E-classes = states, E-nodes = transitions

G

• [Kozen ’93] The semantics of an E-graph is
 :

G
≈G

t1 ≈G t2 ⇔ ∃q . t1 →*G q ←*G t2

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

Δ =

a() → ca,
1() → c1, 2() → c2,
× (ca, c2) → c2a,
≪ (ca, c1) → c2a

÷ (c2a, c2) → c÷

(a × 2) ÷ 2 →* (ca × c2) ÷ c2 → c2a ÷ c2 → c÷

 is defined as and two non-
trivial identities
≈G a ≈G a, 2 ≈G 2, …

  a × 2 ≈G a ≪ 1
(a × 2) ÷ 2 ≈G (a ≪ 1) ÷ 2

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

• A term is represented at if .t q ∈ Q t →*𝒜 q

• An E-graph is a reachable deterministic
tree automaton.

• E-classes = states, E-nodes = transitions

G

• [Kozen ’93] The semantics of an E-graph is
 :

G
≈G

t1 ≈G t2 ⇔ ∃q . t1 →*G q ←*G t2

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

,Q = {c1, c2, ca, c2a, c÷}

Δ =

a() → ca,
1() → c1, 2() → c2,
× (ca, c2) → c2a,
≪ (ca, c1) → c2a

÷ (c2a, c2) → c÷

(a × 2) ÷ 2 →* (ca × c2) ÷ c2 → c2a ÷ c2 → c÷

 is defined as and two non-
trivial identities
≈G a ≈G a, 2 ≈G 2, …

  a × 2 ≈G a ≪ 1
(a × 2) ÷ 2 ≈G (a ≪ 1) ÷ 2

E-graphs as Tree Automata
• Deterministic tree automaton

.𝒜 = (Q, Σ, Δ)

• A term is represented at if .t q ∈ Q t →*𝒜 q

• An E-graph is a reachable deterministic
tree automaton.

• E-classes = states, E-nodes = transitions

G

• [Kozen ’93] The semantics of an E-graph is
 :

G
≈G

t1 ≈G t2 ⇔ ∃q . t1 →*G q ←*G t2
• is a partial congruence relation, or a PCR

(= symmetric, transitive, and congruent).
≈G

8

We allow a tree automaton to be infinite.

÷

×

a 2

≪

1

c1ca

c2

c÷
c2a

Congruence closure over E-graph

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

• forms a partial order.⊑

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

• forms a partial order.⊑

• implies .G1 ⊑ G2 ≈G1
⊆ ≈G2

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

• forms a partial order.⊑

• implies .G1 ⊑ G2 ≈G1
⊆ ≈G2

• Congruence closure: For arbitrary , there exists
a unique minimal E-graph such that .

𝒜
G 𝒜 ⊑ G

9

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

• forms a partial order.⊑

• implies .G1 ⊑ G2 ≈G1
⊆ ≈G2

• Congruence closure: For arbitrary , there exists
a unique minimal E-graph such that .

𝒜
G 𝒜 ⊑ G

9

 can be computed in for finite CC(𝒜) O(n log n) 𝒜

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

• forms a partial order.⊑

• implies .G1 ⊑ G2 ≈G1
⊆ ≈G2

• Congruence closure: For arbitrary , there exists
a unique minimal E-graph such that .

𝒜
G 𝒜 ⊑ G

9

 can be computed in for finite CC(𝒜) O(n log n) 𝒜

g

f

a

b

G

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

• forms a partial order.⊑

• implies .G1 ⊑ G2 ≈G1
⊆ ≈G2

• Congruence closure: For arbitrary , there exists
a unique minimal E-graph such that .

𝒜
G 𝒜 ⊑ G

9

 can be computed in for finite CC(𝒜) O(n log n) 𝒜

g

f

a

b

G

g

f

a

fb⊑

𝒜

f(a) → b

Congruence closure over E-graph

• Tree automata homomorphism .h : 𝒜 → ℬ

• Define if .𝒜 ⊑ ℬ ∃h : 𝒜 → ℬ
• When restricted to E-graphs:

• implies .h1, h2 : G1 → G2 h1 = h2

• forms a partial order.⊑

• implies .G1 ⊑ G2 ≈G1
⊆ ≈G2

• Congruence closure: For arbitrary , there exists
a unique minimal E-graph such that .

𝒜
G 𝒜 ⊑ G

9

 can be computed in for finite CC(𝒜) O(n log n) 𝒜

g

f

a

b

G

g

f

a

b

⊑

CC(𝒜)

g

f

a

fb⊑

𝒜

f(a) → b

Equality Saturation

10

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

10

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

10

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

• The fixpoint semantics of EqSat

10

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

• The fixpoint semantics of EqSat

EqSat(R, G) = ⊔i≥0 ICO(i)
R (G)

10

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

• The fixpoint semantics of EqSat

EqSat(R, G) = ⊔i≥0 ICO(i)
R (G)

• The model semantics of EqSat: is
a universal model of and  
(see the paper for defn. of universal models).

EqSat(R, G)
R G

10

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

• The fixpoint semantics of EqSat

EqSat(R, G) = ⊔i≥0 ICO(i)
R (G)

• The model semantics of EqSat: is
a universal model of and  
(see the paper for defn. of universal models).

EqSat(R, G)
R G

• The two semantics coincide.

10

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

• The fixpoint semantics of EqSat

EqSat(R, G) = ⊔i≥0 ICO(i)
R (G)

• The model semantics of EqSat: is
a universal model of and  
(see the paper for defn. of universal models).

EqSat(R, G)
R G

• The two semantics coincide.

10

Properties of EqSat

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

• The fixpoint semantics of EqSat

EqSat(R, G) = ⊔i≥0 ICO(i)
R (G)

• The model semantics of EqSat: is
a universal model of and  
(see the paper for defn. of universal models).

EqSat(R, G)
R G

• The two semantics coincide.

10

Properties of EqSat

• (Inflationary) .G ⊑ EqSat(R, G)

Equality Saturation

• The immediate consequence operator:  
(rule application defined in the paper)TR

ICOR = CC ∘ TR

• The fixpoint semantics of EqSat

EqSat(R, G) = ⊔i≥0 ICO(i)
R (G)

• The model semantics of EqSat: is
a universal model of and  
(see the paper for defn. of universal models).

EqSat(R, G)
R G

• The two semantics coincide.

10

Properties of EqSat

• (Inflationary) .G ⊑ EqSat(R, G)
• (Finite convergence)  

If is finite, Equality
Saturation converges in a finite
number of steps.

EqSat(R, G)

EqSat and Term Rewriting

11

EqSat and Term Rewriting

• Let be a TRS, ,

• If , then .

• If , then .

R s ∈ TΣ G = EqSat(R, s)
s →*R t s ≈G t

s ≈G t s ↔*R t

11

EqSat and Term Rewriting

• Let be a TRS, ,

• If , then .

• If , then .

R s ∈ TΣ G = EqSat(R, s)
s →*R t s ≈G t

s ≈G t s ↔*R t

• If is bidirectional, , , coincide.

• In this case, EqSat semi-decides the word problem.

R →*R ≈G ↔*R

11

Equality Saturation and the Chase

12

Equality Saturation and the Chase

• The Chase

• A generalization of Datalog.

• Used in data integration and query optimization.

• Two variants: Skolem Chase, Standard Chase.

12

Equality Saturation and the Chase

• The Chase

• A generalization of Datalog.

• Used in data integration and query optimization.

• Two variants: Skolem Chase, Standard Chase.

• Skolem Chase EqSat.≤

12

Equality Saturation and the Chase

• The Chase

• A generalization of Datalog.

• Used in data integration and query optimization.

• Two variants: Skolem Chase, Standard Chase.

• Skolem Chase EqSat.≤

• EqSat Standard Chase.

• EqSat terminates

• a finite run of the encoding chase

• All EGD-fair runs of the encoding chase are finite.

≤
⇔

∃ ⇔

12

Equality Saturation and the Chase

• The Chase

• A generalization of Datalog.

• Used in data integration and query optimization.

• Two variants: Skolem Chase, Standard Chase.

• Skolem Chase EqSat.≤

• EqSat Standard Chase.

• EqSat terminates

• a finite run of the encoding chase

• All EGD-fair runs of the encoding chase are finite.

≤
⇔

∃ ⇔

12

The chase sequence needs to
apply EGD often enough

Equality Saturation and the Chase

• The Chase

• A generalization of Datalog.

• Used in data integration and query optimization.

• Two variants: Skolem Chase, Standard Chase.

• Skolem Chase EqSat.≤

• EqSat Standard Chase.

• EqSat terminates

• a finite run of the encoding chase

• All EGD-fair runs of the encoding chase are finite.

≤
⇔

∃ ⇔

12

The chase sequence needs to
apply EGD often enough

We build an entire system out of this idea!
(Zhang et. al. 2023)

Equality Saturation and the Chase

• The Chase

• A generalization of Datalog.

• Used in data integration and query optimization.

• Two variants: Skolem Chase, Standard Chase.

• Skolem Chase EqSat.≤

• EqSat Standard Chase.

• EqSat terminates

• a finite run of the encoding chase

• All EGD-fair runs of the encoding chase are finite.

≤
⇔

∃ ⇔

12

The chase sequence needs to
apply EGD often enough

We build an entire system out of this idea!
(Zhang et. al. 2023)

• Great speedup: Query optimization, semi-naive
evaluation, worst-case optimal join, …

• New expressive power: Multi-pattern rules,
monotonic aggregation, …

Termination Theorem

• (Single-instance) Does EqSat terminate with for a single term ?

• Recursive enumerable (R.E.)—complete.

• (All-E-graph) Does EqSat terminate for all E-graph ?

• R.E.-hard.

• (All-term) Does EqSat terminate for all ?

• -complete.

t

G

t ∈ TΣ

Π2

13

Termination Theorem

• (Single-instance) Does EqSat terminate with for a single term ?

• Recursive enumerable (R.E.)—complete.

• (All-E-graph) Does EqSat terminate for all E-graph ?

• R.E.-hard.

• (All-term) Does EqSat terminate for all ?

• -complete.

t

G

t ∈ TΣ

Π2

13

Strictly harder than R.E.

Termination Theorem

• (Single-instance) Does EqSat terminate with for a single term ?

• Recursive enumerable (R.E.)—complete.

• (All-E-graph) Does EqSat terminate for all E-graph ?

• R.E.-hard.

• (All-term) Does EqSat terminate for all ?

• -complete.

t

G

t ∈ TΣ

Π2

13

Strictly harder than R.E.

More details in the paper!

Summary

• The fixpoint and model semantics of
Equality Saturation

• Connections to Term Rewriting and
the Chase

• Undecidability of Termination

• Open problems

• Extraction

• Provenance

14

Also check out the egglog system!

GitHub: @egraphs-good/egglog

