
Databases and Search-based
Program Optimization

Yihong Zhang1, Dan Suciu1, Remy Wang2, Max Willsey3
1 University of Washington

2 University of California, Los Angeles
3 University of California, Berkeley

1

About me

2

About me

3

PhD student at
Univ. of Washington

About me

4

I work on
Equality Saturation

PhD student at
Univ. of Washington

About me

5

PhD student at
Univ. of Washington

I work on
Equality Saturation

Program optimization technique
used in 50+ projects
● Awards: PLDI ‘15, OOPSLA ‘21,

ASPLOS ‘24, POPL ‘24.
● Industry users: Intel, Certora,

Bytecode Alliance, …
● EqSat Papers: VLDB ‘20, SIGMOD

‘22 ‘23, ICDE ‘22, PLDI ‘20 ‘24x2,
OOPSLA ‘21 ‘23 ‘24, ASPLOS ‘21 ‘23
‘24x3 ‘25, POPL ‘09 ‘23, ICFP ‘24, CCA
‘21, CCS ‘22, CGO ‘24x2 ‘25x2, DAC ‘23x2
‘24, EGRAPHS ‘22 ‘23x4, FCCM ‘22x2, PACT
‘22x2 ‘24, DAC ‘23x2 24, FMCAD ‘22, MLSys ‘21,
MAPS ‘21, IDDM ‘23, SIGA ‘19, TOG ‘22 …

About me

6

PhD student at
Univ. of Washington

I work on
Equality Saturation

The more I study EqSat,
the more I realize:

It’s just databases!

Program optimization technique
used in 50+ projects
● Awards: PLDI ‘15, OOPSLA ‘21,

ASPLOS ‘24, POPL ‘24.
● Industry users: Intel, Certora,

Bytecode Alliance, …
● EqSat Papers: VLDB ‘20, SIGMOD

‘22 ‘23, ICDE ‘22, PLDI ‘20 ‘24x2,
OOPSLA ‘21 ‘23 ‘24, ASPLOS ‘21 ‘23
‘24x3 ‘25, POPL ‘09 ‘23, ICFP ‘24, CCA
‘21, CCS ‘22, CGO ‘24x2 ‘25x2, DAC ‘23x2
‘24, EGRAPHS ‘22 ‘23x4, FCCM ‘22x2, PACT
‘22x2 ‘24, DAC ‘23x2 24, FMCAD ‘22, MLSys ‘21,
MAPS ‘21, IDDM ‘23, SIGA ‘19, TOG ‘22 …

a(a * 2) / 2

7

Optimizing programs using term rewriting

(a * 2) / 2

8

Optimizing programs using term rewriting

(a * 2) / 2

9

a * (2 / 2)
(x * y) / z = x * (y / z)

Optimizing programs using term rewriting

(a * 2) / 2

10

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

Optimizing programs using term rewriting

(a * 2) / 2

11

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

Optimizing programs using term rewriting

(a * 2) / 2

(a * 2) / 2

12

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

Optimizing programs using term rewriting

(a * 2) / 2

(a * 2) / 2

13

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

(a << 1) / 2
x * 2 = x << 1

Optimizing programs using term rewriting

(a * 2) / 2

(a * 2) / 2

14

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

(a << 1) / 2
x * 2 = x << 1

?

Optimizing programs using term rewriting

(a * 2) / 2

a a * 1 a * 1 * 1 …

(a * 2) / 2

15

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

(a << 1) / 2
x * 2 = x << 1

?

Optimizing programs using term rewriting

(a * 2) / 2

a a * 1 a * 1 * 1 …

(a * 2) / 2

(a * 2) / 2 (2 * a) / 2 (a * 2) / 2
16

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

(a << 1) / 2
x * 2 = x << 1

?

Optimizing programs using term rewriting

(a * 2) / 2

a a * 1 a * 1 * 1 …

(a * 2) / 2

(a * 2) / 2 (2 * a) / 2 (a * 2) / 2
17

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

(a << 1) / 2
x * 2 = x << 1

?

Optimizing programs using term rewriting

(a * 2) / 2

a a * 1 a * 1 * 1 …

(a * 2) / 2

(a * 2) / 2 (2 * a) / 2 (a * 2) / 2
18

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

(a << 1) / 2
x * 2 = x << 1

?

Optimizing programs using term rewriting

(a * 2) / 2

a a * 1 a * 1 * 1 …

(a * 2) / 2

(a * 2) / 2 (2 * a) / 2 (a * 2) / 2
19

a * (2 / 2)
(x * y) / z = x * (y / z)

a * 1
x / x = 1

a
x * 1 = x

(a << 1) / 2
x * 2 = x << 1

?Equality Saturation: apply all the rules all the time!

Optimizing programs using term rewriting

E-graphs and Equality saturation

20

E-graphs and Equality saturation

represents
(a * 2) / 2

21

E-graphs and Equality saturation

E-classes

E-nodes

represents
(a * 2) / 2

22

x * 2 => x << 1

E-graphs and Equality saturation

23

This e-class represents
a * 2 and a << 1

x * 2 => x << 1

E-graphs and Equality saturation

24

This e-class represents
a * 2 and a << 1

This e-class represents
(a*2)/2 and (a<<1)/2

x * 2 => x << 1

E-graphs and Equality saturation

25

x * 2 => x << 1 (x * y) / z => x * (y / z)

E-graphs and Equality saturation

26

x * 2 => x << 1 (x * y) / z => x * (y / z) x / x => 1
x * 1 => x

E-graphs and Equality saturation

loop until
fixpoint / timeout!

27

x * 2 => x << 1 (x * y) / z => x * (y / z) x / x => 1
x * 1 => x

x has to be non-zero!

E-graphs and Equality saturation

loop until
fixpoint / timeout!

28

x * 2 => x << 1 (x * y) / z => x * (y / z) x / x => 1
x * 1 => x

x has to be non-zero!

E-graphs and Equality saturation

loop until
fixpoint / timeout!

0 ∉ rangeOf()

29

x * 2 => x << 1 (x * y) / z => x * (y / z) x / x => 1
x * 1 => x

x has to be non-zero!

E-graphs and Equality saturation

loop until
fixpoint / timeout!

0 ∉ rangeOf()

“E-class analyses”

30

E-graphs and Equality saturation

31

x * 2 => x << 1

C3 C2 C1

C4

C5

x * 2 => x << 1

E-graphs and Equality saturation

C3 C2 C1

C4

C5

32

child out

1 C1

2 C2

Table: number
ch1 ch2 out

C3 C2 C4

Table: *

child out

“a” C3

Table: variable

ch1 ch2 out

C3 C1 C4

Table: <<

ch1 ch2 out

C4 C2 C5

Table: /

E-graphs and Equality saturation

C3 C2 C1

C4

C5

33

child out

1 C1

2 C2

Table: number
ch1 ch2 out

C3 C2 C4

Table: *

child out

“a” C3

Table: variable

ch1 ch2 out

C3 C1 C4

Table: <<

ch1 ch2 out

C4 C2 C5

Table: /

x * 2 => x << 1

E-graphs and Equality saturation

C3 C2 C1

C4

C5

34

child out

1 C1

2 C2

Table: number
ch1 ch2 out

C3 C2 C4

Table: *

child out

“a” C3

Table: variable

ch1 ch2 out

C3 C1 C4

Table: <<

ch1 ch2 out

C4 C2 C5

Table: /

x * 2 => x << 1 <<(x, C1, r) :- *(x, C2, r)

x * 2 => x << 1

E-graphs and Equality saturation

Num 1 ⇒ C1

2 ⇒ C2

Var “a” ⇒ C3

Mul C3 C2 ⇒ C4

Shl C3 C1 ⇒ C4

Div C4 C2 ⇒ C5

C3 C2 C1

C4

C5

Shl(x, 1, c) :- Mul(x, 2, c)

35

E-graphs Databases

E-nodes Tuples

E-classes Labeled null

Rewrite rules Tuple-generating dep. (TGD)

Congruence closure Functional dep. (FD)

E-class analyses
E-graph extraction Monotonic Aggregation

Equality Saturation Chase

x * 2 => x << 1

E-graphs and Equality saturation

Num 1 ⇒ C1

2 ⇒ C2

Var “a” ⇒ C3

Mul C3 C2 ⇒ C4

Shl C3 C1 ⇒ C4

Div C4 C2 ⇒ C5

C3 C2 C1

C4

C5

Shl(x, 1, c) :- Mul(x, 2, c)

36

E-graphs Databases

E-nodes Tuples

E-classes Labeled null

Rewrite rules Tuple-generating dep. (TGD)

Congruence closure Functional dep. (FD)

E-class analyses
E-graph extraction Monotonic Aggregation

Equality Saturation Chase

More details in our ICDT paper (Suciu, Wang, Zhang)

It’s also true the other way around!

37

Volcano/Cascades is also EqSat!

38

Volcano/Cascades is also EqSat!

Volcano and Cascades are query optimization frameworks that

combines rule-based optimization and cost-based optimization.

39

Volcano/Cascades is also EqSat!

Volcano and Cascades are query optimization frameworks that

combines rule-based optimization and cost-based optimization.

Key ideas

● apply rewrite rules over a memo table data structure

● use a cost model to select the best query plan

40

Volcano/Cascades is also EqSat!

Volcano and Cascades are query optimization frameworks that

combines rule-based optimization and cost-based optimization.

Key ideas

● apply rewrite rules over a memo table data structure

● use a cost model to select the best query plan

41

E-graph

Volcano/Cascades is also EqSat!

Volcano and Cascades are query optimization frameworks that

combines rule-based optimization and cost-based optimization.

Key ideas

● apply rewrite rules over a memo table data structure

● use a cost model to select the best query plan

42

E-graph

E-graph Extraction

Volcano/Cascades is also EqSat!

Volcano and Cascades are query optimization frameworks that

combines rule-based optimization and cost-based optimization.

Key ideas

● apply rewrite rules over a memo table data structure

● use a cost model to select the best query plan

43

E-graph

E-graph Extraction
🔥Hot take: EqSat is a more

principled framework

Case study:
Rule- and cost-based optimization

of matrix expressions

https://github.com/egraphs-good/egglog/

tree/icdt-db-x-demo

44

https://github.com/egraphs-good/egglog/
https://github.com/egraphs-good/egglog/

(sort Mat)
(function Matrix (String String String) Mat)
(function Prod (Mat Mat) Mat)
(function Agg (String Mat) Mat)

45

(sort Mat)
(function Matrix (String String String) Mat)
(function Prod (Mat Mat) Mat)
(function Agg (String Mat) Mat)

46

Table: Matrix

ch1 ch2 ch3 out

ch1 ch2 out ch1 ch2 out

Table: Prod Table: Agg

(sort Mat)
(function Matrix (String String String) Mat)
(function Prod (Mat Mat) Mat)
(function Agg (String Mat) Mat)

(let A (Matrix "A" "i" "j")) ;; Ai,j
(let B (Matrix "B" "j" "k")) ;; Bj,k
(let C (Matrix "C" "k" "l")) ;; Ck,l
;; Σk Σj (AB)C
(let ABC (Agg "k" (Agg "j"

 (Prod (Prod A B) C))))

47

Table: Matrix

ch1 ch2 ch3 out

ch1 ch2 out ch1 ch2 out

Table: Prod Table: Agg

(sort Mat)
(function Matrix (String String String) Mat)
(function Prod (Mat Mat) Mat)
(function Agg (String Mat) Mat)

(let A (Matrix "A" "i" "j")) ;; Ai,j
(let B (Matrix "B" "j" "k")) ;; Bj,k
(let C (Matrix "C" "k" "l")) ;; Ck,l
;; Σk Σj (AB)C
(let ABC (Agg "k" (Agg "j"

 (Prod (Prod A B) C))))

48

Table: Matrix

ch1 ch2 ch3 out

“A” “i” “j” CA

“B” “j” “k” CB

“C” “k” “l” CC

ch1 ch2 out

CA CB CAB

CAB CC CABC

ch1 ch2 out

“j” CABC Cj

“k” Cj Ck

Table: Prod Table: Agg

(sort Mat)
(function Matrix (String String String) Mat)
(function Prod (Mat Mat) Mat)
(function Agg (String Mat) Mat)

(let A (Matrix "A" "i" "j")) ;; Ai,j
(let B (Matrix "B" "j" "k")) ;; Bj,k
(let C (Matrix "C" "k" "l")) ;; Ck,l
;; Σk Σj (AB)C
(let ABC (Agg "k" (Agg "j"

 (Prod (Prod A B) C))))

49

;; commutativity
(rewrite (Prod x y) (Prod y x))

50

;; commutativity
(rewrite (Prod x y) (Prod y x))

51

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))

52

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))

53

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))

54

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))

55

56

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))
;; pushing down aggregation
(rewrite (Agg v (Prod x y))
 (Prod (Agg v x) y)
 :when ((∉ v (vars-of y))))
(rewrite (Agg v (Prod x y))
 (Prod x (Agg v y))
 :when ((∉ v (vars-of x)))

57

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))
;; pushing down aggregation
(rewrite (Agg v (Prod x y))
 (Prod (Agg v x) y)
 :when ((∉ v (vars-of y))))
(rewrite (Agg v (Prod x y))
 (Prod x (Agg v y))
 :when ((∉ v (vars-of x)))

Example: Σk Ai,jBj,k = Ai,j(Σk Bj,k)

58

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))
;; pushing down aggregation
(rewrite (Agg v (Prod x y))
 (Prod (Agg v x) y)
 :when ((∉ v (vars-of y))))
(rewrite (Agg v (Prod x y))
 (Prod x (Agg v y))
 :when ((∉ v (vars-of x)))

59

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))
;; pushing down aggregation
(rewrite (Agg v (Prod x y))
 (Prod (Agg v x) y)
 :when ((∉ v (vars-of y))))
(rewrite (Agg v (Prod x y))
 (Prod x (Agg v y))
 :when ((∉ v (vars-of x)))

60

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))
;; pushing down aggregation
(rewrite (Agg v (Prod x y))
 (Prod (Agg v x) y)
 :when ((∉ v (vars-of y))))
(rewrite (Agg v (Prod x y))
 (Prod x (Agg v y))
 :when ((∉ v (vars-of x)))

(function vars-of (Mat) Set<String>)
(rule (
 (= e (Matrix m i j))
) (
 (set (vars-of e) (new-set i j))
))

…

61

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))
;; pushing down aggregation
(rewrite (Agg v (Prod x y))
 (Prod (Agg v x) y)
 :when ((∉ v (vars-of y))))
(rewrite (Agg v (Prod x y))
 (Prod x (Agg v y))
 :when ((∉ v (vars-of x)))

Rule-based Opt.

62

;; commutativity
(rewrite (Prod x y) (Prod y x))
;; associativity
(rewrite (Prod (Prod x y) z)
 (Prod x (Prod y z)))
;; commuting aggregation
(rewrite (Agg v1 (Agg v2 e))
 (Agg v2 (Agg v1 e)))
;; pushing down aggregation
(rewrite (Agg v (Prod x y))
 (Prod (Agg v x) y)
 :when ((∉ v (vars-of y))))
(rewrite (Agg v (Prod x y))
 (Prod x (Agg v y))
 :when ((∉ v (vars-of x)))

Cost-based Opt.

;; user provided dimension information
(function dim-of (String) i64)

;; estimate the size of a matrix expr
(function size-of (Mat) i64)
(rule (
 (= (vars-of e) vs)
) (
 (set (size-of e)
 (Π (map dim-of vs)))
))

63

;; user provided dimension information
(function dim-of (String) i64)

;; estimate the size of a matrix expr
(function size-of (Mat) i64)
(rule (
 (= (vars-of e) vs)
) (
 (set (size-of e)
 (Π (map dim-of vs)))
))

;; set the cost of an expr as its size
(rule (
 (= (size-of (Prod e1 e2)) k)
) (
 (set-cost (Prod e1 e2) k)
))
…

64

65

(set (dim-of "i") 256)
(set (dim-of "j") 64)
(set (dim-of "k") 16)
(set (dim-of "l") 256)

66

(set (dim-of "i") 256)
(set (dim-of "j") 64)
(set (dim-of "k") 16)
(set (dim-of "l") 256)

(extract ABC)

extracted with cost 1401867:
(Agg "k" (Prod
 (Agg "j" (Prod
 (Matrix "A" "i" "j")
 (Matrix "B" "j" "k")))
 (Matrix "C" "k" "l")))

67

(set (dim-of "i") 256)
(set (dim-of "j") 64)
(set (dim-of "k") 16128)
(set (dim-of "l") 256)

(extract ABC)

extracted with cost 6430731:
(Agg "j" (Prod
 (Matrix "A" "i" "j")
 (Agg "k" (Prod
 (Matrix "B" "j" "k")
 (Matrix "C" "k" "l")))))

68

This talk

● EqSat: a promising approach to search-based program optimization
● EqSat ⊆ the Chase
● Cascades/Volcano ⊆ Equality Saturation
● EqSat unifies rule- and cost-based program optimization.

egraphs-good.github.io/egglog github.com/egraphs-good/egglog

https://egraphs-good.github.io/egglog
http://github.com/egraphs-good/egglog

