EqSat is not better than term rewriting*

<u>Yihong Zhang</u>, Oliver Flatt EGRAPHS 2023

* but tree automata completion is!

We study the termination problem of EqSat (TERM_{EqSat}):

- **TERM**_{EqSat} and **TERM**_{TmRw} do not imply each other.
 - This refutes the misconception that EqSat is always a better replacement of term rewriting.
- We show tree automata completion (TAC), a technique similar to EqSat with the property that TERM_{TMRW} implies TERM_{TAC}.
 We show an application of Tree Automata completion to rewrite rule synthesis.
- We introduce two tricks for ensuring EqSat termination in practice and their corresponding guarantees.

Agenda

We study the termination problem of EqSat (TERM_{EqSat}):

The termination problem of EqSat

Definition

- Instance: a rewriting system R, a term t.
- Question: does running EqSat with R on initial term t terminate in a finite number of iterations?

If EqSat terminates, the equalities are saturated.

- Optimality in program optimization.
- Decidability in theory solving.

The termination problem of EqSat

Folklore: "EqSat is term rewriting but more powerful".

- E-graphs can represent infinitely many terms; so
- EqSat should terminate for more term rewriting systems.

This is not true.

Let R be

$$\begin{array}{ccc} (x \ \cdot \ y) \ \cdot \ z \ \rightarrow \ x \ \cdot \ (y \ \cdot \ z) \\ 0 \ \cdot \ a \ \rightarrow \ 0 \end{array}$$

R is terminating in TmRw.

Let R be

$$\begin{array}{ccc} (x \ \cdot \ y) \ \cdot \ z \ \rightarrow x \ \cdot \ (y \ \cdot \ z) \\ & 0 \ \cdot \ a \ \rightarrow \ 0 \end{array}$$

R is terminating in TmRw.

However, with initial term 0 \cdot a, EqSat will apply rule 0 \cdot a \rightarrow 0 and create a cyclic E-graph that represents

0, $0 \cdot a$, $(0 \cdot a) \cdot a$, $((0 \cdot a) \cdot a) \cdot a$, ...

Let R be

$$\begin{array}{ccc} (x \ \cdot \ y) \ \cdot \ z \ \rightarrow x \ \cdot \ (y \ \cdot \ z) \\ & 0 \ \cdot \ a \ \rightarrow \ 0 \end{array}$$

R is terminating in TmRw.

However, with initial term 0 \cdot a, EqSat will apply rule 0 \cdot a \rightarrow 0 and create a cyclic E-graph that represents

0, $0 \cdot a$, $(0 \cdot a) \cdot a$, $((0 \cdot a) \cdot a) \cdot a$, ...

Associativity will reassociate these terms and produce a, $a \cdot a$, $a \cdot a \cdot a$, ..., which are pairwise inequivalent.

Let R be

$$\begin{array}{ccc} (x \ \cdot \ y) \ \cdot \ z \ \rightarrow x \ \cdot \ (y \ \cdot \ z) \\ & 0 \ \cdot \ a \ \rightarrow \ 0 \end{array}$$

R is terminating in TmRw.

However, with initial term 0 \cdot a, EqSat will apply rule 0 \cdot a \rightarrow 0 and create a cyclic E-graph that represents

0, $0 \cdot a$, $(0 \cdot a) \cdot a$, $((0 \cdot a) \cdot a) \cdot a$, ...

Associativity will reassociate these terms and produce a, $a \cdot a$, $a \cdot a \cdot a$, ..., which are pairwise inequivalent.

This requires an infinite number of E-classes, which is impossible.

Convergent TRSes do not terminate

There are also convergent term rewriting systems that do not terminate in EqSat.

Convergence (termination + confluence) is one of the strongest properties in term rewriting.

If a TRS is terminating, then the set of derivable terms should always be finite.

• It is natural to think EqSat should terminate as well.

The issue: EqSat is not exactly term rewriting!

- EqSat tracks equivalences, not rewritability!
- EqSat can derive terms not derivable in term rewriting.

Why?

Term rewriting will
never derive g(a)!

Agenda

We study the termination problem of EqSat (TERM_{EqSat}):

Tree automata completion

Comparison

Comparison

TERM_TMRW and TERM_TAC are
known to be undecidable.
We additionally showed
TERM_EqSat is undecidable.

Implementation of Tree Automata Completion

- We have not implemented it.
- Tree Automata Completion is computationally harder than EqSat.
 - Need to maintain and query a DAG than an equivalence relation.

Potential Applications of Tree Automata Completion

- Applications that require strong termination guarantees.
- Applications where **rewritability/refinement** is desired.
- Ruler: rewrite rule synthesis.

Ruler's rule validation problem

Instance: a list of expression pairs (*lhs*, *rhs*)

Question: For each *i*, can EqSat use *lhs*, to derive *rhs*,?

Ruler currently inserts all lhs_i , runs EqSat once, and checks if each rhs_i exists and is equivalent to lhs_i .

- + Very fast thanks to batching.
- This can be unsound.

$$\begin{array}{cccc} x \ + \ 0 \ \rightarrow \ x \\ x \ \times \ 1 \ \rightarrow \ x \end{array}$$

$$\begin{array}{c} x + 0 \rightarrow x \\ x \times 1 \rightarrow x \end{array}$$

$$\begin{array}{cccc} x + \theta \rightarrow x \\ x \times 1 \rightarrow x \end{array} \qquad \begin{array}{c} \text{Term rewriting} \\ \text{considers} \\ \text{rewritability} \end{array}$$

$$(a \times 1) + \theta \qquad & a \times 1 \qquad & a \\ & a + \theta \qquad & a + \theta \end{array}$$

$$a \times 1 \qquad & a + \theta \qquad & a + \theta \end{array}$$

$$x + 0 \rightarrow x$$

$$x \times 1 \rightarrow x$$
EqSat considers
term equivalences
$$(a \times 1) + 0$$

$$a \times 1$$

$$a + 0$$

$$\begin{array}{c} x + 0 \rightarrow x \\ x \times 1 \rightarrow x \end{array}$$

Agenda

We study the termination problem of EqSat (TERM_{EqSat}):

Tree Automata Completion

Practical approaches to termination

In practice, people ensure termination by running EqSat for a finite number of iterations.

Guarantee: If there exists a proof to u = v of the form $\exists w. u \rightarrow^{\leq N} w \leftarrow^{\leq N} v$, running EqSat for N iterations can prove u = v.

Observation: Different termination strategy gives us different guarantees.

Merge-only Equality Saturation

Given an E-graph G, merge-only EqSat applies a rule only when both the left-hand side and the right-hand side are already in the E-graph.

Merge-only Equality Saturation

Given an E-graph G, merge-only EqSat applies a rule only when both the left-hand side and the right-hand side are already in the E-graph.

Termination: Notice merge-only EqSat shrinks the number of E-classes in each iteration.

Merge-only Equality Saturation

Given an E-graph G, merge-only EqSat applies a rule only when both the left-hand side and the right-hand side are already in the E-graph.

Termination: Notice merge-only EqSat shrinks the number of E-classes in each iteration.

Guarantee: If u = v can be proved using only terms in G, this proof can be obtained with merge-only EqSat.

(Depth-)bounded Equality Saturation

Depth-bounded EqSat tracks each E-class with a depth analysis:

depth(c) = min_{c represents t}depth(t)

During rule application, we apply a rule only when the right-hand side has depth \leq N.

(Depth-)bounded Equality Saturation

Depth-bounded EqSat tracks each E-class with a depth analysis:

depth(c) = min_{c represents t}depth(t)

During rule application, we apply a rule only when the right-hand side has depth \leq N.

Termination: The depth constraint bounds the # of possible E-classes, which bounds the # of possible E-graphs.

(Depth-)bounded Equality Saturation

Guarantee: if u = v can be proved using terms with depth $\leq N$, this proof can be obtained with depth-bounded EqSat.

+ Useful for program optimization.

- Hardly terminate for realistic N.

Can be generalized to *F*-bounded EqSat, where *F* is some constraints that bounds the number of possible E-classes (e.g., size).

Takeaways

- The termination problem of EqSat is not trivial.
- Tree Automata Completion = EqSat (\approx) + (\lesssim).

Takeaways

- The termination problem of EqSat is not trivial.
- Tree Automata Completion = EqSat (\approx) + (\lesssim).
- Two termination strategies.
 - Merge-only EqSat.
 - Depth-bounded EqSat.