
EqSat is not better than term rewriting*

Yihong Zhang, Oliver Flatt
EGRAPHS 2023

* but tree automata completion is! 1

Agenda

We study the termination problem of EqSat (TERM
EqSat

):

● TERM
EqSat

 and TERM
TmRw

 do not imply each other.

○ This refutes the misconception that EqSat is always a

better replacement of term rewriting.

● We show tree automata completion (TAC), a technique similar to

EqSat with the property that TERM
TmRw

 implies TERM
TAC

.

○ We show an application of Tree Automata completion to

rewrite rule synthesis.

● We introduce two tricks for ensuring EqSat termination in

practice and their corresponding guarantees.

2

We study the termination problem of EqSat (TERM
EqSat

):

Agenda

Termination of Equality Saturation

Tree Automata Completion

Termination Tricks with Guarantees

3

The termination problem of EqSat

Definition

● Instance: a rewriting system R, a term t.
● Question: does running EqSat with R on initial term t

terminate in a finite number of iterations?

If EqSat terminates, the equalities are saturated.

● Optimality in program optimization.
● Decidability in theory solving.

4

The termination problem of EqSat

Folklore: “EqSat is term rewriting but more powerful”.

● E-graphs can represent infinitely many terms; so
● EqSat should terminate for more term rewriting systems.

This is not true.

5

Associativity does not terminate
Let R be

(x · y) · z → x · (y · z)
0 · a → 0

R is terminating in TmRw.

However, with initial term 0 · a, EqSat will apply rule
0 · a → 0 and create a cyclic E-graph that represents

0, 0 · a, (0 · a) · a, ((0 · a) · a) · a, ...

Associativity will reassociate these terms to produce a, a
· a, a · a · a, ..., which are pairwise inequivalent.

This requires an infinite number of E-classes, which is
impossible.

6

Associativity does not terminate
Let R be

(x · y) · z → x · (y · z)
0 · a → 0

R is terminating in TmRw.

However, with initial term 0 · a, EqSat will apply rule
0 · a → 0 and create a cyclic E-graph that represents

0, 0 · a, (0 · a) · a, ((0 · a) · a) · a, ...

Associativity will reassociate these terms to produce a, a
· a, a · a · a, ..., which are pairwise inequivalent.

This requires an infinite number of E-classes, which is
impossible.

7

Associativity does not terminate
Let R be

(x · y) · z → x · (y · z)
0 · a → 0

R is terminating in TmRw.

However, with initial term 0 · a, EqSat will apply rule
0 · a → 0 and create a cyclic E-graph that represents

0, 0 · a, (0 · a) · a, ((0 · a) · a) · a, ...

Associativity will reassociate these terms and produce a,
a · a, a · a · a, ..., which are pairwise inequivalent.

This requires an infinite number of E-classes, which is
impossible.

8

Associativity does not terminate
Let R be

(x · y) · z → x · (y · z)
0 · a → 0

R is terminating in TmRw.

However, with initial term 0 · a, EqSat will apply rule
0 · a → 0 and create a cyclic E-graph that represents

0, 0 · a, (0 · a) · a, ((0 · a) · a) · a, ...

Associativity will reassociate these terms and produce a,
a · a, a · a · a, ..., which are pairwise inequivalent.

This requires an infinite number of E-classes, which is
impossible.

9

Convergent TRSes do not terminate

There are also convergent term rewriting systems that do

not terminate in EqSat.

Convergence (termination + confluence) is one of the

strongest properties in term rewriting.

10

Why?

If a TRS is terminating, then the set of derivable terms

should always be finite.

● It is natural to think EqSat should terminate as well.

The issue: EqSat is not exactly term rewriting!

● EqSat tracks equivalences, not rewritability!

● EqSat can derive terms not derivable in term rewriting.

11

Why?

Represents

f(a) g(b)

Represents

f(a) g(b)

f(b) g(a)

Term rewriting will
never derive g(a)!

a → b

12

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv

We study the termination problem of EqSat (TERM
EqSat

):

Agenda

Termination of Equality Saturation

Tree Automata Completion

Termination Tricks with Guarantees

13

Tree automata completion

Represents

f(a) g(b)

Represents

f(a) g(b)

f(b) g(a)

a → b

The inner E-classes

don’t represent terms

in the outer E-classes.

14

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv

Tree automata completion

Represents

f(a) g(b)

Represents

f(a) g(b)

f(b) g(a)

a → b

In EqSat, when we merge two terms, we introduce an

equivalence edge between them (a ≈ b).

In Tree Automata Completion, however,

we introduce an ordered edge (a ≲ b).

The inner E-classes

don’t represent terms

in the outer E-classes.

 TAC = EqSat

 - equivalence

 + preorder

15

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv

Tree automata completion

Represents

f(a) g(b)

Represents

f(a) g(b)

f(b) g(a)

a → b

In EqSat, when we merge two terms, we introduce an

equivalence edge between them (a ≈ b).

In Tree Automata Completion, however,

we introduce an ordered edge (a ≲ b).

The inner E-classes

don’t represent terms

in the outer E-classes.

Guarantee: Tree Automata Completion will only

derive terms derivable in term rewriting.

Corollary: TERM
TmRw

 implies TERM
TAC

.

16

https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv
https://app.diagrams.net/?page-id=Sdr3cvBIpXlINCJNsRdY&scale=auto#G1bfpOmm7sob37HGqM3wGI8TMdhRAw9ZVv

Comparison

TERM
TmRw

TERM
TAC

TERM
EqSat

❌ ❌

❌

TERM
TmRw

 and TERM
TAC

 are

known to be undecidable.

17

Comparison

TERM
TmRw

TERM
TAC

TERM
EqSat

❌ ❌

❌

TERM
TmRw

 and TERM
TAC

 are

known to be undecidable.

We additionally showed

TERM
EqSat

 is undecidable.

18

Implementation of Tree Automata Completion

● We have not implemented it.

● Tree Automata Completion is computationally harder than EqSat.

○ Need to maintain and query a DAG than an equivalence

relation.

19

Potential Applications of Tree Automata Completion

● Applications that require strong termination guarantees.

● Applications where rewritability/refinement is desired.

● Ruler: rewrite rule synthesis.

This talk

20

Tree automata completion for rewrite rule synthesis

Ruler currently inserts all lhs
i
, runs EqSat once, and

checks if each rhs
i
 exists and is equivalent to lhs

i
.

+ Very fast thanks to batching.

- This can be unsound.

Ruler’s rule validation problem

Instance: a list of expression pairs (lhs
i
, rhs

i
)

Question: For each i, can EqSat use lhs
i
 to derive rhs

i
?

21

Tree automata completion for rewrite rule synthesis

x + 0 → x

x × 1 → x

(a × 1) + 0 a
❓

a × 1 a + 0
❓

22

Tree automata completion for rewrite rule synthesis

x + 0 → x

x × 1 → x

(a × 1) + 0 a

a × 1 a + 0
❓

a × 1

a + 0

23

Tree automata completion for rewrite rule synthesis

x + 0 → x

x × 1 → x

a × 1 a + 0❌

(a × 1) + 0 aa × 1

a + 0

Term rewriting

considers

rewritability

24

Tree automata completion for rewrite rule synthesis

x + 0 → x

x × 1 → x

(a × 1) + 0 a
❓

a × 1 a + 0
❓

EqSat considers

term equivalences

25

Tree automata completion for rewrite rule synthesis

x + 0 → x

x × 1 → x

(a × 1) + 0 a

a × 1 a + 0

a × 1

a + 0

❓

26

Tree automata completion for rewrite rule synthesis

x + 0 → x

x × 1 → x

a × 1 a + 0

(a × 1) + 0 aa × 1

a + 0

Bad!
Tree Automata

Completion can help! 27

We study the termination problem of EqSat (TERM
EqSat

):

Agenda

Termination of Equality Saturation

Tree Automata Completion

Termination Tricks with Guarantees

28

Practical approaches to termination

In practice, people ensure termination by running EqSat for a

finite number of iterations.

Observation: Different termination strategy gives us

different guarantees.

Guarantee: If there exists a proof to u = v of the form

∃ w. u →≤N w ←≤N

v,

 running EqSat for N iterations can prove u = v.

29

Merge-only Equality Saturation

Given an E-graph G, merge-only EqSat applies a rule only when both

the left-hand side and the right-hand side are already in the

E-graph.

30

Merge-only Equality Saturation

Given an E-graph G, merge-only EqSat applies a rule only when both

the left-hand side and the right-hand side are already in the

E-graph.

Termination: Notice merge-only EqSat shrinks the number of

 E-classes in each iteration.

 Guarantee: If there is a proof of u = v using only terms in G,

 this proof can be obtained with merge-only EqSat.

31

Merge-only Equality Saturation

Given an E-graph G, merge-only EqSat applies a rule only when both

the left-hand side and the right-hand side are already in the

E-graph.

Termination: Notice merge-only EqSat shrinks the number of

 E-classes in each iteration.

 Guarantee: If u = v can be proved using only terms in G, this

 proof can be obtained with merge-only EqSat.

32

(Depth-)bounded Equality Saturation

Depth-bounded EqSat tracks each E-class with a depth analysis:

depth(c) = min
c represents t

depth(t)

Min depth of all

terms represented. Still admits

infinite terms!

33

(Depth-)bounded Equality Saturation

Depth-bounded EqSat tracks each E-class with a depth analysis:

depth(c) = min
c represents t

depth(t)

During rule application, we apply a rule only when the right-hand

side has depth ≤ N.

34

(Depth-)bounded Equality Saturation

Depth-bounded EqSat tracks each E-class with a depth analysis:

depth(c) = min
c represents t

depth(t)

During rule application, we apply a rule only when the right-hand

side has depth ≤ N.

Termination: The depth constraint bounds the # of possible

 E-classes, which bounds the # of possible E-graphs.

35

(Depth-)bounded Equality Saturation

Can be generalized to F-bounded EqSat, where F is some constraints

that bounds the number of possible E-classes (e.g., size).

 Guarantee: if u = v can be proved using terms with depth ≤ N,
 this proof can be obtained with depth-bounded EqSat.

+ Useful for program optimization.

- Hardly terminate for realistic N.

36

Takeaways

● The termination problem of EqSat is not trivial.

● Tree Automata Completion = EqSat - (≈) + (≲).

37

Takeaways

● The termination problem of EqSat is not trivial.

● Tree Automata Completion = EqSat - (≈) + (≲).

● Two termination strategies.

○ Merge-only EqSat.

○ Depth-bounded EqSat.

38

