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1 Introduction
Term rewriting is one of the most fundamental techniques
in programming languages. It is used to define program se-
mantics, to optimize programs, and to check program equiv-
alences. An issue with using term rewriting to optimize pro-
gram is that, in a non-confluent term rewriting system, it is
usually not clear which rule should be applied first, among all
the possible rules. Equality saturation (EqSat) is a variant of
term rewriting that mitigates this so-called Phase-Ordering
Problem. In EqSat, all the rules are applied at the same time,
and the resulting program space is stored compactly in a
data structure called E-graph1.
EqSat has been shown to be very successful for program

optimizations and program equivalence checking, evenwhen
the given set of rewrite rules are not terminating or even
when the theory is not decidable in general. However, despite
its success in practice, there are no formal guarantees about
EqSat: for example, when does EqSat terminate, and if it does
not, how does one make it terminate. The first problem is
known in the term rewriting literature as the termination
problem, and the second is known as the completion problem.
Both problems are very hard, and there are rich literatures
on both problems. In the setting of EqSat, these problems
are not only theoretically interesting, but also have practical
implications. For example, in program optimization, we may
want to get the most “optimized” term with regard to a given
set of rules, so making sure EqSat terminate is important to
such optimality guarantees. Or, some theories are decidable
but deciding them is slow, so one may want to speed up the
reasoning by using EqSat, but there is no point in “speeding
up” the decision procedure if it simply does not terminate. In
this talk, we will focus on the termination problem of EqSat.
We don’t attempt to solve this problem entirely, but rather
have this blog talk as a first step and to draw community’s
attention to this problem. In fact, we found many interesting
results about this termination problem.

This talk will show the following:
∗This talk is based on the following two blog posts:

• https://effect.systems/blog/ta-completion.html;
• https://oflatt.com/magic-terms.html.

1The reader should treat E-graphs and tree automata as two interchangeable
terms. An E-graph is just a deterministic finite tree automaton with no 𝜖
transitions and no unreachable states. Moreover, all tree automata in this
talk contain no unreachable states.

(1) how the innocent-looking associativity rule can cause
non-termination;

(2) why a terminating, and even canonical, term rewriting
system does not necessarily terminate in EqSat;

(3) how to fix the above problem by “weakening” EqSat’s
merge operationwith its applications in rule synthesis;
and

(4) two potentially promising approaches to ensure the
termination of EqSat.

One fascinating thing we found during this journey is that,
researchers working on tree automata indeed developed a
technique almost identical to EqSat, known as Tree Automata
(TA) completion. Different from EqSat, TA completion does
not have the problem in (2) and is exactly the algorithm we
will show in (3). Moreover, there is a beautiful connection
between EqSat and TA completion: TA completion is the
“preorder” version of EqSat.

2 Term rewriting 101: Ground theories are
decidable via congruence closure

Before understandingwhy associativity can cause non-termination,
let us first briefly review some relevant backgrounds on
ground theories and congruence closure.
A ground equational theory is an equational theory in-

duced by a finite set of ground identities of the form 𝑠 ≈ 𝑡 ,
where both 𝑠 and 𝑡 are ground terms (i.e., no variables). For
example, below is an example of a ground theory over sig-
nature Σ = {𝑎, 𝑏, 𝑐, 𝑓 , 𝑔}:

𝑎 ≈ 𝑓 (𝑏)
𝑏 ≈ 𝑔(𝑐)

𝑓 (𝑔(𝑐)) ≈ 𝑓 (𝑎)

All the equations that can be deduced from these three
identities hold in this equational theory. For example, we
have 𝑎 ≈ 𝑓 (𝑎) because 𝑎 ≈ 𝑓 (𝑏) ≈ 𝑓 (𝑔(𝑐)) ≈ 𝑓 (𝑎). Here,
𝑓 (𝑏) ≈ 𝑓 (𝑔(𝑐)) is implied by 𝑏 ≈ 𝑔(𝑐). In equational theory,
a function by definition maps equivalent inputs to equivalent
outputs.

A classic result in term rewriting is that the word problem
of ground equational theory is decidable. A word problem
asks whether two ground terms 𝑠 and 𝑡 are equivalent in a

https://effect.systems/blog/ta-completion.html
https://oflatt.com/magic-terms.html
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given theory. In general, this problem is undecidable. How-
ever, if the theory is ground, several algorithms exist that
decide its word problem. One of the most well-known al-
gorithm is the 𝑂 (𝑛 log𝑛) congruence closure algorithm of
Downey et al. [2]. One way to view it is that the congruence
closure algorithm produces a canonical term rewriting sys-
tem for each input set of ground identities: For theory 𝐸, it
builds an E-graph of the theory. Every E-graph corresponds
to a canonical term rewriting system, which gives a way to
decide 𝐸. For example, the congruence closure algorithm will
produce the following E-graph for the theory above:

𝑐𝑎 = {𝑎, 𝑓 (𝑐𝑎), 𝑓 (𝑐𝑏)}
𝑐𝑏 = {𝑏,𝑔(𝑐𝑐 )}
𝑐𝑐 = {𝑐}

where 𝑐𝑎, 𝑐𝑏, 𝑐𝑐 denote E-classes of the E-graph, and𝑎,𝑏,𝑐 ,𝑓 (𝑐𝑎),
𝑓 (𝑐𝑏),𝑔(𝑐𝑐 ) denote E-nodes. This E-graph naturally gives the
following canonical term rewriting system 𝐺 , which rewrite
equivalent terms to the same e-class:

𝑎 →𝐺 𝑐𝑎

𝑓 (𝑐𝑎) →𝐺 𝑐𝑎

𝑓 (𝑐𝑏) →𝐺 𝑐𝑎

𝑏 →𝐺 𝑐𝑏

𝑔(𝑐𝑐 ) →𝐺 𝑐𝑏

𝑐 →𝐺 𝑐𝑐

Now, checking 𝑠 ≈ 𝑡 can be simply done by checking if there
exists some normal form 𝑢 such that 𝑠 →∗

𝐺
𝑢 ←∗

𝐺
𝑡 holds.

For example, 𝑔(𝑓 (𝑎)) ≈ 𝑔(𝑓 (𝑔(𝑐))) because

𝑔(𝑓 (𝑎)) →𝐺 𝑔(𝑓 (𝑐𝑎))
→𝐺 𝑔(𝑐𝑎)
←𝐺 𝑔(𝑓 (𝑐𝑏))
←𝐺 𝑔(𝑓 (𝑔(𝑐𝑐 ))
←𝐺 𝑔(𝑓 (𝑔(𝑐))))

This is sound and always terminates, because the term
rewriting system produced by an E-graph is canonical—
meaning every term will have exactly one normal form and
term rewriting always terminates.

3 Ground associative theory does not
terminate in EqSat

Associativity is a fundamental axiom tomany algebraic struc-
tures like semigroups, monoids, and groups. It has the fol-
lowing form:

𝑥 · (𝑦 · 𝑧) ≈ (𝑥 · 𝑦) · 𝑧.
This rule can be oriented as 𝑥 · (𝑦 · 𝑧) → (𝑥 · 𝑦) · 𝑧 (or
𝑥 · (𝑦 · 𝑧) → (𝑥 · 𝑦) · 𝑧). It is attempting to think this rule
terminate, and therefore we can just apply associativity to

Figure 1. 0 · 𝑎 = 𝑎

saturation to decide theories with associativity! Unfortu-
nately, ground associative theories are not decidable in gen-
eral. Term Rewriting and All That [1] gives an example of
undecidable associative theory (we write 𝑥𝑦 for 𝑥 · 𝑦 and
𝑥 · · · 𝑥 for 𝑥𝑛 for brevity and associativity allows us to drop
brackets):

∀𝑥,𝑦, 𝑧. (𝑥𝑦)𝑧 ≈ 𝑥 (𝑦𝑧)
𝑎𝑏𝑎2𝑏2 ≈ 𝑏2𝑎2𝑏𝑎
𝑎2𝑏𝑎𝑏2𝑎 ≈ 𝑏2𝑎3𝑏𝑎
𝑎𝑏𝑎3𝑏2 ≈ 𝑎𝑏2𝑎𝑏𝑎2

𝑏3𝑎2𝑏2𝑎2𝑏𝑎 ≈ 𝑏3𝑎2𝑏2𝑎4

𝑎4𝑏2𝑎2𝑏𝑎 ≈ 𝑏2𝑎4

There is another way to state this proposition algebraically:
the word problem for finitely presented semigroups are not
decidable.

Because of this, associative rules do not terminate in EqSat
in general. Otherwise, given a set of ground identities 𝐸, we
can run the congruence closure algorithm over 𝐸 to get an
E-graph, and run EqSat with associativity rules. When it
reaches the fixed point and terminates, this gives us a way to
decide ground associative theories, which is a contradiction
to the fact that such theories are not decidable.

To better understand why associativity does not terminate
in EqSat, consider this example: suppose · is associative and
satisfy the ground identity 0 · 𝑎 ≈ 0 for constants 0, 𝑎. Now
suppose we orient this identity into rewrite rule 0 · 𝑎 → 0
while having the associative rule (𝑥 · 𝑦) · 𝑧 → 𝑥 · (𝑦 · 𝑧).
This is a terminating term-rewriting system (although not
confluent, because the term (0 · 𝑎) · 𝑎 has two normal forms
0 and 0 · (𝑎 · 𝑎)).
However, this ruleset causes problems in EqSat: Starting

with the initial term 0 · 𝑎, EqSat will apply the rewrite rule
0 · 𝑎 → 0 and merge 0 · 𝑎 and 0 into the same E-class. The
E-graph is shown in Figure 1.
Notice that because of the existence of cycles in this E-

graph, it represents not only the two terms 0 and 0 · 𝑎 but
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Figure 2. An E-graph that represents ℎ(𝑓 ∗ (𝑎), 𝑏)

indeed an infinite set of terms. For example, (0 · 𝑎) · 𝑎 is
explicitly represented by E-class 𝑞0 because

(0 · 𝑎) · 𝑎 →∗ (𝑞0 · 𝑞𝑎) · 𝑞𝑎 → 𝑞0 · 𝑞𝑎 → 𝑞0.

In fact, 𝑞0 represents the infinite set of terms

0 · 𝑎 ≈ (0 · 𝑎) · 𝑎 ≈ ((0 · 𝑎) · 𝑎) · 𝑎 ≈ · · · .

For any such term (0 ·𝑎) · · · ·, it can be rewritten to a term of
the form 0 · (𝑎 · · · · ). Now, for associativity to terminate, the
output E-graph need to at least represent the set of terms
{𝑎, 𝑎 · 𝑎, (𝑎 · 𝑎) · 𝑎, · · · }, where any two terms are not equal.
This requires infinitely many E-classes, each represents some
𝑎𝑛 , while a finite E-graph will have only a finite number of
E-classes. Therefore, EqSat will not terminate in this case.

4 Canonical TRSs do not necessarily
terminate in EqSat as well

In our last example, the term rewriting system 𝑅 = {0 · 𝑎 →
0, (𝑥 ·𝑦) ·𝑧 → 𝑥 · (𝑦 ·𝑧)} is terminating, but 𝑅 is not confluent.
Confluence means that every term will have at most one
normal form, and associativity is usually not confluent. One
may think non-confluence could be what causes EqSat to
not terminate. But this is not the case; there are canonical
(i.e., terminating + confluent) TRSs that are non-terminating
in EqSat. Here we give such an example: Let the TRS 𝑅 be

ℎ(𝑓 (𝑥), 𝑦) →𝑅 ℎ(𝑥,𝑔(𝑦))
ℎ(𝑥, 𝑔(𝑦)) →𝑅 ℎ(𝑥,𝑦)

𝑓 (𝑥) →𝑅 𝑥

This is a terminating term rewriting system, where every
term of the form ℎ(𝑓 𝑛 (𝑎), 𝑔𝑚 (𝑏)) will have the normal form
ℎ(𝑎, 𝑏), no matter the order of rule application. However,
this is not terminating in EqSat: consider the initial term
ℎ(𝑓 (𝑎), 𝑏). Running the rule 𝑓 (𝑥) →𝑅 𝑥 over the initial E-
graph will union 𝑓 (𝑎) and 𝑎 together, creating an infinite
(but regular) set of terms ℎ(𝑓 ∗ (𝑎), 𝑏). See Figure 2.

Now, by rule ℎ(𝑓 (𝑥), 𝑦) →𝑅 ℎ(𝑥,𝑔(𝑦)), each ℎ(𝑓 𝑛 (𝑎), 𝑏)
will be rewritten intoℎ(𝑎,𝑔𝑛 (𝑏)), so the output E-graphmust
contain 𝑔𝑛 (𝑏) for 𝑛 ∈ N. But notice that the rule set will not
rewrite any 𝑔𝑛 (𝑏) to 𝑔𝑚 (𝑏) for 𝑛 ≠ 𝑚, which means that
we have an infinite set of inequivalent terms 𝑏 0 𝑔(𝑏) 0
𝑔2 (𝑏) 0 · · ·. Again, the existence of infinitely many e-classes,
one for each 𝑔𝑛 (𝑏), implies that EqSat will not terminate.

5 Tree Automata Completion to the Rescue
For a terminating TRS, the set of reachable terms is always
finite2. Intuitively, one will think that EqSat is just a more
powerful way of doing term rewriting. So it is natural to
think that running EqSat with a terminating TRS (with some
initial term 𝑡 ) will eventually terminate. But this is not true,
as has been shown in the last two sections. The issue is
because EqSat is not exactly term rewriting: the equivalence
in EqSat is bidirectional. For example, in our last example,
the rewrite from 𝑓 (𝑎) to 𝑎 does not only make the E-graph
represent these two terms, but also 𝑓 (𝑓 (𝑎)) and 𝑓 (𝑓 (𝑓 (𝑎)))
and so on.

Before going further, let us first formally define the prob-
lem. For a TRS 𝑅, we define the set of reachable terms 𝑅∗ (𝑠) =
{𝑡 | 𝑠 →∗

𝑅
𝑡}. If 𝑅 is terminating, 𝑅∗ (𝑠) is finite for any term

𝑠 . It can also be shown that EqSat always computes a super-
set of 𝑅∗ (𝑠). A natural idea is that if our EqSat procedure
computes exactly 𝑅∗ (𝑠), it should terminate for terminating
𝑅. And in fact it may also be capable of handling some non-
terminating TRSs: E-graphs can represent many infinite sets
of terms.

It turns out, term rewriting researchers have developed a
technique that computes exactly 𝑅∗ (𝑠), represented as a tree
automaton. The technique is known as tree automata com-
pletion [3, 4, 6], which is the main technique we hope to in-
troduce in this talk. TA completion proceeds as follows: build
an initial tree automaton and run term rewriting over this
tree automaton until saturation. Specifically, it searches for
left-hand sides of rewrite rules, build and insert right-hand
sides, and merge the left-hand sides with right-hand sides.
Does this sound familiar? Yes, this is EqSat! It is striking that
the program optimization and term rewriting communities
independently come up with essentially the same technique.

But wait a second, didn’t we just say EqSat does not neces-
sarily compute𝑅∗ (𝑠) exactly? This is correct. There is a tweak
that distinguishes tree automata completion from EqSat. In
tree automata completion, merging is performed direction-
ally. For example, suppose the left-hand side is in E-class 𝑞𝑙
and right-hand side in E-class 𝑞𝑟 , EqSat will basically rename
every occurrence of 𝑞𝑙 with 𝑞𝑟 (or vice versa). As a result
the two E-classes are not distinguishable after the merging.
Tree automata completion, on the other hand, performs the

2This can be shown via König’s lemma for trees. Notice that TRSs are always
finitely branching and rewriting in terminating TRSs will not contain cycles.
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merging by adding a new (𝜖-)transition 𝑞𝑟 → 𝑞𝑙 (recall the
TRS view of an E-graph).

To better see the difference, consider the E-graph that
represents terms {𝑓 (𝑎), 𝑔(𝑏)}

𝑎 → 𝑞𝑎

𝑓 (𝑞𝑎) → 𝑞𝑓

𝑏 → 𝑞𝑏

𝑔(𝑞𝑏) → 𝑞𝑔

and the rewrite rule 𝑅 = {𝑎 → 𝑏}. EqSat will rename 𝑞𝑏
with 𝑞𝑎 (or 𝑞𝑏 with 𝑞𝑎), so every E-node that points to child 𝑎
(resp. 𝑏) now also points to 𝑏 (resp. 𝑎). The E-graph after the
merging will now contain {𝑓 (𝑎), 𝑓 (𝑏), 𝑔(𝑎), 𝑔(𝑏)}. Note that
among these terms, 𝑔(𝑎) is not reachable by 𝑅; the rewrite
rule 𝑎 → 𝑏 can only rewrite 𝑓 (𝑎) to 𝑓 (𝑏), but not 𝑔(𝑏)
to 𝑔(𝑎). In contrast, tree automata completion will add the
transition 𝑞𝑏 → 𝑞𝑎 . Recall that we say a term 𝑡 is represented
by an E-class 𝑞 in an E-graph 𝐺 if 𝑡 →∗

𝐺
𝑞. With the new

transition 𝑞𝑏 → 𝑞𝑎 , we have every term represented by 𝑞𝑎 is
now represented by 𝑞𝑏 , but not the other way around. As a
consequence, 𝑓 (𝑏) is represented by the E-graph, since

𝑓 (𝑏) → 𝑓 (𝑞𝑏) → 𝑓 (𝑞𝑎) → 𝑞𝑓 ,

while 𝑔(𝑎) is not represented.
This difference guarantees that TA completion will only

contain terms that are reachable by the TRS. Moreover, if
TA completion terminates, it will compute exactly 𝑅∗ (𝑠).
The actual TA completion is slightly more general than this:
instead of considering the set of reachable terms of a single
initial term, it considers the set of reachable terms of an initial
tree automaton, which may contain an infinite (but regular)
set of terms. It turns out, although the set of reachable terms
𝑅∗ (𝑠) is always finite (and thus regular) for initial term if 𝑅
is terminating, it is undecidable if the set of reachable terms
is regular or not for an initial tree automaton even when 𝑅 is
terminating and confluent [5]. To ensure the termination of
TA completion even when the reachable set is not regular,
researchers have proposed approximation algorithms for TA
completion, which are useful for applications like program
verification.

5.1 Discussions on tree automata completion
Equivalence and preorder . One interesting way of viewing
TA completion is that it generalizes the equivalence relation in
EqSat to a preorder : EqSat maintains an equivalence relation
≈ between terms and asserts 𝑙𝜎 ≈ 𝑟𝜎 for every left-hand
side 𝑙𝜎 and right-hand side 𝑟𝜎 . EqSat also guarantees that
if 𝑡 [𝑎] is in the E-graph and 𝑎 ≈ 𝑏, then 𝑡 [𝑏] is also in the
E-graph and 𝑡 [𝑎] ≈ 𝑡 [𝑏]3. TA completion, instead, maintains
a preorder relation ≲ and asserts 𝑙𝜎 ≲ 𝑟𝜎 for every left-hand
side 𝑙𝜎 and right-hand side 𝑟𝜎 . 𝑙𝜎 ≲ 𝑟𝜎 and 𝑙𝜎 ≳ 𝑟𝜎 in TA
completion is equivalent to 𝑙𝜎 ≈ 𝑟𝜎 in equality saturation,
3Relations with these properties are known as partial strong congruences.

and in such cases 𝑙𝜎 and 𝑟𝜎 can be viewed as one state.
Moreover, TA completion guarantees that if 𝑡 [𝑎] is in the tree
automaton and 𝑎 ≲ 𝑏, then 𝑡 [𝑏] is also in the tree automaton
and 𝑡 [𝑎] ≲ 𝑡 [𝑏].

Implementation of tree automata completion. We have
not implemented TA completion, but it would be interest-
ing to see how to implement TA completion in an EqSat
framework like egg [9]. It seems we only need to make two
modifications: First, during rewrite, instead of merging left-
hand side and right-hand side, add an edge from the left-hand
side to the right-hand side (or equivalently, an 𝜖-transition
from the right-hand side to the left-hand side). As an opti-
mization, we can merge two states together if they are in
the same strongly connected component. Second, modify
the matching procedure so that it will also “follow” these
𝜖-transitions. The new matching procedure can no longer
be expressed as a conjunctive query, as opposed to EqSat,
and is more expensive to compute. In general, though, TA
completion has a higher time complexity than equality satu-
ration, since dealing with strongly connected components
and directed acyclic graphs are more difficult than dealing
with equivalences.

The termination problem of tree automata comple-
tion. We have shown above that given a terminating TRS
𝑅 and an initial term 𝑡 , tree automata completion is always
terminating but EqSat may not terminate, which shows that
the termination of tree automata completion does not imply
the termination of EqSat. But the termination of EqSat does
not imply the termination of tree automata completion as
well! To see this, consider

𝑓 (𝑥) →𝑅 𝑔(𝑓 (ℎ(𝑥)))
ℎ(𝑥) →𝑅 𝑏

For tree automata completion to terminate, the set of reach-
able terms must be regular. However, for initial term 𝑓 (𝑎),
the set of reachable terms is

{𝑔𝑛 (𝑓 (ℎ𝑛 (𝑎))) | 𝑛 ∈ N} ∪ {𝑔𝑛 (𝑓 (ℎ𝑚 (𝑏))) | 𝑛 > 𝑚},
which is not regular. In EqSat, because equivalence is bidi-
rectional, all the ℎ(𝑥) are in the same E-class as 𝑏, so the first
rewrite rule can be effectively viewed as 𝑓 (𝑥) →𝑅 𝑔(𝑓 (𝑏)),
where the right-hand side is a ground term. As a result, there
are only a finite number of equivalence classes in the theory
defined by these rewrite rules, which implies the termination
of equality saturation.

5.2 Tree automata completion for rule synthesis
Tree automata completion has been used for various pro-
gram verification tasks [4, 6]. In this section we briefly sketch
a potential novel application of tree automata completion:
rewrite rule synthesis. A rule synthesis tool like Ruler [8]
may enumerate hundreds of thousands of rewrite rules.While
all of them are valid, they are highly redundant. To make the
synthesized ruleset practical, it is important to make them
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small. One way to shrink the size of the ruleset is based on
the idea of subsumption: we say a ruleset 𝑅′ is subsumed by
its subset 𝑅 if 𝑅∗ (𝑡) = 𝑅′∗ (𝑡) for all term 𝑡 . In this case we
can safely shrink 𝑅 to 𝑅′4. Moreover, we can try removing
one rule 𝑟 at a time from 𝑅′ to greedily find 𝑅, so that the
problem becomes proving that 𝑅 subsumes 𝑟 .

A practical way to show subsumption of a rule is to rewrite
the left-hand side of 𝑟 with 𝑅 and try to derive the right-hand
side of 𝑟 . Because 𝑟 contains forall-quantified variables, we
first ground it, turning it into a term with fresh variable
symbols. For example, given a candidate rule 𝑥 + 0 → 0,
we ground the left-hand side, turning it into 𝑣 + 0, for some
fresh name 𝑣 . Now, we compute (an under-approximation
of) the reachable set of 𝑣 + 0. If 0 ∈ 𝑅′∗ (𝑣 + 0) holds, then
we know that 𝑅′ subsumes 𝑟 . Intuitively, because we didn’t
know anything about the variable 𝑣 , if we found that we can
derive the right side of 𝑟 from the left side, for any 𝑣 we will
be able to do the same thing.

Ruler’s rule minimization algorithm is based on a similar
idea but uses equality saturation to prove the left-hand side
and the right-hand side equivalent. However, since EqSat
tracks equivalences rather than rewritability, Ruler’s algo-
rithm is unsound. For instance, suppose 𝑅 = {𝑎 → 𝑏} and 𝑟 ,
the rule to be removed, is 𝑓 (𝑏, 𝑎) → 𝑓 (𝑎, 𝑎). 𝑅 does not sub-
sume 𝑟 , but EqSat readily derives the right-hand side from
the left-hand side. This by itself is not a problem: suppose
the synthesized rules are also run using equality saturation,
we obtain the same behavior.

However, this causes problems when combined with an
additional optimization: Ruler attempts to reduce a large set
of rules all at once, instead of reducing just one rewrite rule
at a time. This is much faster because many rewrite rules
can be derived at once, and common subexpressions and
common rewriting can be shared.

To see why this is unsound, consider the following exam-
ple. Suppose we have the ruleset:

𝑥 + 0→ 𝑥

𝑥 × 1→ 𝑥

(𝑥 × 1) + 0→ 𝑥 (∗)
𝑥 × 1→ 𝑥 + 0 (∗)

Now let’s try to derive rules marked with (∗). First, we
ground left-hand sides and get (𝑣 × 1) + 0 and 𝑣 × 1. Now,
we apply our rules on initial term (𝑣 × 1) + 0. And it turns
out, we can derive both (∗) rules:

(𝑣 × 1) + 0 → 𝑣 × 1 → 𝑣

𝑣 × 1 ← (𝑣 × 1) + 0 → 𝑣 + 0
The equivalence between 𝑣 × 1 and 𝑣 + 0 is witnessed

by (𝑣 × 1) + 0. We call (𝑣 × 1) + 0 a “magic term” because
it allows us to derive the equivalence, but is not derivable
itself; it comes from another context. In this case, the magic
4Note in this setting we care less about the termination or the confluence
of the TRS

term was introduced because of Ruler’s unsound batching
optimization.
On the other hand, tree automata completion does not

have this “magic term” problem, as it tracks a directed rewrite
relation between terms. In the above example, even though
(𝑣 × 1) + 0 can be rewritten to both 𝑣 × 1 and 𝑣 + 0, it does not
prove their derivability, because there’s no path from 𝑣 × 1
to 𝑣 + 0 in the computed tree automata. We can therefore
readily use tree automata completion to reduce a large set
of rewrite rules at once.

6 Practical approaches to termination
So far we have shown that TA completion is a variant of
EqSat that is terminating for terminating TRS. But besides
this we still have not shown anything positive about the
termination of EqSat itself. In particular, although there have
been research on when term rewriting terminates and when
TA completion terminates, neither of them implies the ter-
mination of EqSat (and vice versa). We have been thinking
about the termination problem for a while, and we have yet
to come up with some non-trivial criteria5. Despite this, in
practice there are many tricks people can use to stop EqSat
early and still get relatively “complete” e-graphs. We briefly
mention two of them below.
Depth-bounded equality saturation. Let us define the

depth of an E-class depth(𝑐) to be the smallest depth possible
among terms represented by the E-graph, namely

argmin𝑡→∗𝑐depth(𝑐).
This is well-defined as we require all E-classes to represent
some terms. Now, given a limit on depth 𝑁 , depth-bounded
equality saturation maintains depth(𝑐) for each E-class dur-
ing equality saturation, and only apply a rewrite rule when
any of the created E-classes does not have a depth greater
than 𝑁 . Because there’s only finite number of E-graphs with
bounded depth6, depth-bounded EqSat always terminates
for any given 𝑁 .

Depth-bounded EqSat enjoys some nice properties. If two
terms can be proved equivalent without using any term with
depth > 𝑁 , depth-bounded EqSat can eventually show their
equivalence. This is also useful in program optimization,
where the optimal term is unlikely to be, say, 10× larger than
the original term. However, as we prototyped depth-bounded
equality saturation a while ago, we found depth-bounded
EqSat still took a very long time to terminate even for a
5There are some simple syntactic criteria that we can borrow from the ones
for TA completion. For example, if all rules have right-hand sides with depth
1, equality saturation will always terminate because applying rules won’t
create new E-classes. Similarly, if the right-hand sides are ground terms
only, equality saturation will also terminate. The two criteria can be further
combined: if the variables of the right-hand side terms only occur at depth
1, equality saturation will always terminate.
6Every distinct e-class contains (at least) one distinct term of depth𝑁 . There
are only finitely many depth-𝑁 terms, so finitely many E-classes. Finally,
there are finitely many ways to connect finitely many E-classes.
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reasonable 𝑁 . This somehow makes sense, since the number
of trees with bounded depths grows rapidly [7].
Merge-only equality saturation. This idea has been

around for a while and was first came up with by Remy
Wang as we are aware. It is also very natural: We only apply
the subset of rewrite rules if both the left-hand side and the
right-hand side are already present in the E-graph. These
rewrite rules essentially only merge E-classes together with-
out creating any new E-nodes and are obviously terminating.
They are useful when you have run EqSat for several iter-
ations, want to stop there, but still want some relatively
complete result. Merge-only EqSat provides the guarantee
that if two terms can be proven equivalent using only terms
in an E-graph𝐺 , they can be proven equivalent by running
merge-only EqSat over 𝐺 .
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