
egglog In Practice: Automatically Improving Floating-point
Error

OLIVER FLATT, YIHONG ZHANG

Herbie is a tool for automatically improving floating-point accuracy in programs. Egglog is a new language
for performing rewriting over equality, supporting robust analysis. In this tutorial, we show how we improved
Herbie in two ways. First, we will show how we leverage egglog to perform sound rewriting in the presence
of division for Herbie. Second, we show how to use egglog’s powerful rules to extract more accurate programs
from the database.

1 OVERVIEW
Herbie is a tool for automatically improving floating-point accuracy in programs (Panchekha et
al. 2015). A core part of Herbie is using egg, an egraph implementation, to explore equivalent
programs (Willsey et al. 2021). It then extracts a sample of these programs, measures their accuracy,
and combines them into a final output that has the better accuracy.

However, Herbie suffers a number of problems when using egg. First, Herbie is unable to apply
its rewrite rules in a sound way: it frequently uses unsound rules involving division and exponents.
Because of the unsound rules, Herbie must take an additional step to validate programs in the
egraph and discard bogus programs. Using these rules in a sound way would require proving that
the denominator does not error, a complex analysis that is difficult with egg. Second, Herbie’s
sampling only considers a small number of the equivalent programs in the egraph, so it often misses
good alternatives to the original program.

In this tutorial, we will show how we solved both problems using egglog, a language for perform-
ing rewriting over equality which supports complex analysis and queries. At the core of egglog, it
treats an egraph as a (relational) database and expresses egraph queries and rewrites as database
rules. Egglog addresses Herbie’s first problem by leveraging functional dependencies, a core concept
of egglog, to store complex analysis about the programs in the egraph. By computing an interval
analysis in the egraph, we are able to prove that some expressions are non-zero and thus perform
rewriting. The second problem is addressed by leveraging egg’s powerful query system to compute
the error analysis in the database, extracting a most-accurate program at the same time.

2 PROBLEM 1: SOUND REWRITING
2.1 Egglog
Throughout the rest of this tutorial, we will use a fragment of Herbie as the running example. First,
let’s define a simple language for arithmetic, including numbers, variables, addition, division, and
multiplication. The datatype macro is used to define a new datatype with several variants.

(datatype Math
(Num Rational)
(Var String)
(Add Math Math)
(Div Math Math)
(Mul Math Math))

Now, let’s also define some useful constants.

(let zero (Num (rational 0 1)))

Author’s address: Oliver Flatt, Yihong Zhang.

2 Oliver Flatt, Yihong Zhang

(let one (Num (rational 1 1)))
(let two (Num (rational 2 1)))

Next, we can define some rewrites similar to egg.

(rewrite (Add a b) (Add b a)) ;; commutativity
(rewrite (Add a zero) a) ;; identity
(rewrite (Add (Num r1) (Num r2)) ;; constant folding addition

(Num (+ r1 r2)))

These rewrites execute as a query over the database of terms, looking for terms that match the
pattern on the left. When a match is found, the rewrite unions the result with the right-hand side
of the rewrite. These queries are donemodulo equality, meaning that they perform identically
to e-matching in an egraph. In other words, they find all matches in the database, sometimes
leveraging existing equalities. Actually, the rewrite form is just syntactic sugar for a simple rule
form. The rewrite (rewrite (Add a b) (Add b a)) is the same as

(rule ((Add a b)) ((union (Add a b) (Add b a))))

.
One of these rewrites is actually not only syntactic—the constant folding rule performs a primitive

addition of rational numbers. We see here the first benefit of egglog over egg: Egg’s rewrite
language only support syntactic rewrites, and to support rewrites like this require complicated Rust
implementations of an analysis or a custom applier. In egglog constant folding can be expressed as
a simple rewrite that performs the addition on the right-hand side.
Let’s make sure these rules work. In the following program, we define an expression 1+2 and

then apply the rewrites to it.

(define one-two (Add one two))

(push)
(run 1)
;; yay, constant folding works
(check (= one-two (Num (rational 3 1))))
;; also, commutativity works
(check (= (Add two one) one-two))
(pop)

The push and pop commands, similar to those in SMTLib, push and pop the current state of
the database to a stack1. We use the run command to run all the rules. We then use the check
command to run a query, throwing an exception if the query does not match.

2.2 Interval Analysis
Let’s try to define a more ambitious rule. In math notation, it is written as ∀𝑥, 𝑥

𝑥
= 1. But notice

that in egglog notation, the variable we matched on is x, but it doesn’t appear on the left or right
side of the equality. That means we need to union two other terms together, so we can’t use the
rewrite form. In a normal egraph library, this would be a problem, forcing us to use some sort of
custom applier for a rule. In egglog, it is simple to define using a rule2:
1Different from incremental solving in SMTLib, push and pop in egglog clone the database and are expensive. To implement
them efficiently requires support for backtracking.
2Actually, this rule doesn’t quite work in the current version of egglog, because it doesn’t know the type of x. This will be
fixed in the future.

egglog In Practice: Automatically Improving Floating-point Error 3

(rule (x)
((union (Div x x) one)))

The rule matches any x, and performs the action of unioning the result of the division with one.
However, as many readers may guess, this rule has a problem: when x is zero, it adds the term 0

0
to the database. Depending on your semantics, this can cause big problems. In standard math, 0

0
should certainly be a domain error, which is not the same as one.

However, in many cases, it is still sound to use this rule. For example, we can prove that
√
𝑥 + 1 is

either a domain error or it is positive, so we can safely apply the rule. Luckily, in egglog, it is easy to
write an interval analysis which tracks the range of values a term can take. In fact, interval analysis
is more powerful in the the presence of equality because it can leverage equivalent programs to
find a more precise bound (Coward et al. 2022).

First, we define an egglog function which stores the interval for every equivalence class.

(function ival (Math) Interval
:merge (intersect old new))

A function in egglog is like a relation in a database, but it preserves the functional dependency.
That is, at each step there is only one output per input. As such, it needs a way to resolve conflicts
when two inputs to the function become equal. For example, if x + y = y + x and the function
previously had two interval outputs, one for x + y and one for y + x, then the merge function is
called to resolve the conflict. In this case, we simply take the intersection of the two intervals, since
the real-valued output must be contained in both intervals.

Now, let’s write some rules which compute the intervals for each variant of Math.

(rule ((Num r))
((set (ival (Num r)) (interval r r))))

(rule ((Add a b)
(= (ival a) i1)
(= (ival b) i2))
((set (ival (Add a b)) (ival-Add i1 i2))))

(rule ((Mul a b)
(= (ival a) i1)
(= (ival b) i2))
((set (ival (Mul a b)) (ival-Mul i1 i2))))

These rules use interval arithmetic primitives defined as a plugin to egglog. They match on
variants of Math, using the intervals of the subterms to compute the interval of the whole term.
The set command sets the output of a function to a particular value. Now, we can execute our rule
soundly:

(rule (x
(ival-NonZero (ival x)))
((union one (Div x x))))

The built-in ival-NonZero checks that the interval for x does not contain zero. When the range
does not contain zero, the rule can fire. For example, if we know that a variable "x" has the range
[0, 1] we can safely apply it to 𝑥 + 1:

(let x (Var "x"))
(let x1 (Add x one))

(push)

4 Oliver Flatt, Yihong Zhang

(set (ival x) (interval (rational 0 1) (rational 1 1)))

(run 3)

(check (= one (Div x1 x1)))
(pop)

2.3 Implementing Intervals in egglog
In the last section, we implement an interval analysis using the interval plugin to egglog imple-
mented in Rust. This gives egglog much power, since we can use state-of-the-art Rust libraries to
complement egglog with domain-specific capabilities, but it now requires code both written in
egglog and in Rust.
In fact, we don’t have to use a Rust plugin if we don’t want to. We can define a simple interval

library inside egglog. We first define the interval sublanguage as a datatype, which contains both
the intervals and operations over them.

(datatype Interval
(I Rational Rational)
(ival-Add Interval Interval)
(ival-Mul Interval Interval)
(intersect Interval Interval))

Here is the fun part: we can define the interval semantics as rewrite rules in egglog. For instance,
the first rule says, whenever there are terms of the form (ival-Add (I la ha) (I lb hb)) in
the database, egglog should populate (I (+ la lb) (+ ha hb)) and equate them. We also tag
interval-related rules with the interval ruleset to separate them from program rewriting rules.

(ruleset interval)
(rewrite (ival-Add (I la ha) (I lb hb))

(I (+ la lb) (+ ha hb)) :ruleset interval)
(rewrite (ival-Mul (I la ha) (I lb hb))

(I (min (min (* la lb) (* la hb))
(min (* ha lb) (* ha hb)))

(max (max (* la lb) (* la hb))
(max (* ha lb) (* ha hb))))

:ruleset interval)
(rewrite (intersect (I la ha) (I lb hb))

(I (max la lb) (min ha hb))
:ruleset interval)

Finally, our Herbie demo uses ival-NonZero to test whether an interval is non-zero. Here we
define ival-NonZero as a relation that contains all non-zero intervals in the database.

(relation ival-NonZero (Interval))
(rule ((= i (I lo hi))

(> lo (rational 0 1)))
((ival-NonZero i)) :ruleset interval)

(rule ((= i (I lo hi))
(< hi (rational 0 1)))
((ival-NonZero i)) :ruleset interval)

egglog In Practice: Automatically Improving Floating-point Error 5

During the rewriting, we alternate between the program rewriting and the computation of
intervals. This can be done with egglog’s schedule, which allows composable and fine-grained rule
scheduling:

(define-schedule main-schedule (seq
(run 1) ;; run the default ruleset once
(saturate interval))) ;; run interval rules to fixpoint

(run main-schedule 3)

3 FINDING ACCURATE PROGRAMS
Now that we have a way to rewrite math expressions soundly, let’s turn our attention to finding a
more accurate program. After all, there are many equivalent programs in the database, and many
of them perform very differently in floating-point. But before we can do that, we need to define a
way to measure the accuracy of a program.

3.1 Measure Accuracy
In fact, a great way to measure the accuracy of a program on a particular input is to use interval
arithmetic! By computing an interval arithmetic on a particular point at high precision, we can
compute the real value of an expression up to a specified error bound. If our error bound is small
enough, we can compute the best possible 64-bit floating-point answer. In fact, this is exactly the
technique that Herbie already uses, but it does so outside of the egraph. Here’s how it works:

;; Set the variable x to a particular input value 200/201
(set (ival x) (interval (rational 200 201) (rational 200 201)))

;; compute the best possible 64-bit floating-point answer
(function true-value (Math) f64)

(rule ((= val (to-f64 (ival expr))))
((set (true-value expr) val)))

(run main-schedule 4)
;; prints 1.9950248756218905
(extract (true-value x1))

The code sets "x" to a particular value, then runs our same interval analysis rules from before. The
interval analysis computes a tight bound on the output value, so we know that 1.9950248756218905
is the best we could do with 64-bit floating-point.

3.2 Finding an Accurate Program
Now that we have a "truth" value for a program on a particular point, we can use it to find a more
accurate program. To do this, we write an egglog analysis that keeps track of the most accurate
program for each equivalence class. The code below defines a function best-error which stores
the best floating-point value computed so far. In practice, we would also need a function to store
the program itself, but we omit that here for brevity.

(function best-error (Math) f64 :merge new :default NAN)

(rule ((Num n))
((set (best-error (Num n)) (to-f64 n))))

6 Oliver Flatt, Yihong Zhang

The code uses a merge function which always accepts the new value. In general, the merge
function needs to be monotonic, but in this case it is sound because our rules will only populate
the table with values that converge on the "truth" value. We also include a :default option which
specifies the default value for the function.

Finally, we can write a rule that computes the best error for a particular program, using the best
error for its subterms. Importantly, the rule needs to only fire when the error is better than the
current best error. Here, we use the rel-error built-in function to compare to the true-v, the "truth"
value for the program.
(rule ((= expr (Add a b))

(= (best-error a) va)
(= (best-error b) vb)
(= true-v (true-value (Add a b)))
(= computed (f64-Add va vb))
(< (rel-error (best-error (Add a b)) true-v)

(rel-error computed true-v)))
((set (best-error (Add a b)) computed)))

Unfortunately, this method cannot find us the optimal program for the input, because floating-
point accuracy does not always increase monotonically. It could be the case that the best program
for the input has higher floating-point error at an intermediate term, but this error is cancelled
out later during computation. However, monotonicity is a good approximation for the optimal
output in practice. In any case, this procedure is certainly better than Herbie’s old sampling-based
approach.

BIBLIOGRAPHY
Samuel Coward, George A. Constantinides, and Theo Drane. Abstract Interpretation on E-Graphs. 2022.
Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary Tatlock. Automatically Improving

Accuracy for Floating Point Expressions. SIGPLAN Not. 50(6), 2015. https://doi.org/10.1145/2813885.
2737959

Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt, Zachary Tatlock, and Pavel Panchekha.
Egg: Fast and Extensible Equality Saturation. Proc. ACM Program. Lang. 5(POPL), 2021. https://doi.org/10.
1145/3434304

https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/3434304
https://doi.org/10.1145/3434304

	Abstract
	1 Overview
	2 Problem 1: Sound Rewriting
	2.1 Egglog
	2.2 Interval Analysis
	2.3 Implementing Intervals in egglog

	3 Finding Accurate Programs
	3.1 Measure Accuracy
	3.2 Finding an Accurate Program

	Bibliography

