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Abstract

In this report, I examine the concept “abstraction without regret” and its applications in databases.
I implement Sdl Datalog compiler in Scala, a programming language that supports many high-level
abstractions, and achieves efficiency that is comparable to highly optimized C code. The key insight
behind our approach is to automatically derive an efficient compiler from an interpreter, which is known
as Futamura projection. Finally, I did a benchmark on the tool and preliminary results suggests that
Sdl beats state-of-the-art Datalog compilers and interpreters on many test cases, where it achieves up to
10X speedup. Although this does not necessarily imply that is generally superior, our tool is promising
and shows how efficiency can be achieved without losing high-level abstractions.

1 Introduction

It’s known that most applications in today’s database world is written in low-level languages, like C or
C++. One reason for this is that most of today’s databases can be dated back to decades ago, where new,
high-level languages have not been invented and software engineering and organizations haven’t been a big
issue, while nowadays, modern database consists of millions lines of low-level code, which would be a disaster
if not well-organized. As Christoph Koch put it,

“In practice, the code of this core [of a classical SQL DBMS] is a great monolith, formidable
in its bulk (millions of lines of code). Buffer and storage management are tightly integrated.
The page abstraction is a prime example of abstraction failure, and stores identifiers relevant to
other subsystems, such as recovery. Concurrency control rears its ugly head when it comes to
protecting ACID semantics against insertions and deletions, and when there are multiple access
paths to data, some hierarchical like B-trees. . . . ” (Koch, 2013)

Another reason, which is a more realistic consideration, involves performance issues. It’s well known that
performance is critical to database management system, and unfortunately, high-level programming lan-
guages, which come with its overhead, are notorious for its performance. This makes it impractical to write
programs for efficiency-critical applications in a high-level language at the time.

However, as decades has grown, another research community, namely the PL community, has also gone
a long way with countless brilliant ideas. Recent trends have proposed that now it’s the time for both
community to learn from each other for the development of modern, efficient database at a large scale with
high productivity: equipped with the more developed PL techniques such as Futamura projection (Futamura,
1999), there has already been several works devoted to introducing indirections into database community
without losing the efficiency competence, known as “abstraction without regret”. Many previous works have
been done in proposing such concept. For example, Amir Shaikhha et al. present in their award-winning paper
(Shaikhha et al., 2018) a query compiler written in Scala, a high-level, object-functional hybrid language
(Odersky and Rompf, 2014). The compiler avoids the overhead of high-level languages while maintaining
nicely-defined abstractions, beating cutting-edge query compiler written in low-level language. A replay of
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the same idea is also presented to the PL community as a Functional Pearl (Rompf and Amin, 2015), which
implements a prototype SQL query compiler in less than 500 LOC, beating the highly optimized C code
that makes up the bulk of MySQL and other traditional database systems.

In this paper, I’m proposing, as a case study, a Datalog compiler in Scala called Sdl. Datalog is a Domain-
Specific Language (DSL) for recursive query processing based on fixed-point semantics. Datalog has a very
concise, yet expressive semantics, and has been applied widely to domains like program analysis, enterprise
software, declarative networking, etc. Practical implementations of Datalog nowadays are usually Datalog-
to-C compilers or interpreters, both implemented in a primitive way. For example, Souffle (Jordan et al.,
2016) is an variant of Datalog targeting program analysis as well as general recursive query processing. It
carries with itself an interpreter engine and a compiler engine in C++ (See Section 2).

The main techniques in implementing Sdl is Lightweight Modular Staging (LMS) (Rompf and Odersky,
2012). LMS is a type-directed framework for staged compilation and generative programming. Empowered
by LMS, we could synthesize efficient C programs from Datalog source code by specifying the semantics of
Datalog with a standard definitional interpreter. Besides the efficient code synthesized, we obtain all the
language features of the host language for free—subtyping, parametric polymorphism, higher order functions,
to name a few—and all of these will be simply optimized away in the final C programs. This gives us the
benefits of both the full abstractions of a high-level language and the efficiency comparable to these written
in a low-level language.

2 Related Works

In this section, we outline some related works and a few backgrounds of the techniques we are presenting in
this paper.

Partial Evaluations and Futamura Projection: Partial evaluation is the idea of partially evaluating
the program before the runtime, most often during compilation time. This can be achieved because many
evaluations are context independent and thus the result can be determined beforehand. For example, given
the following program in Scala:

def f(x: Int) {
def pow(n: Int, m: Int) =

if (m == 0) 1 else {
val temp = pow(n, m / 2)
temp * temp *

(if (isOdd(m)) n else 1)}
val result0 = pow(3, 3)
val result1 = pow(3, x)
val result2 = pow(x, 3)
// ...

}

It turns out that the value of result0 can be calculated at compile time and the statement can be simplified
as val result = 28. Furthermore, since we got partial clues for what values of result1 and result2 could
be, we can indeed simplify the computation of them. The partially evaluated program will thus look like the
following:

def f(x: Int) {
def pow3(m: Int) =

if (m == 0) 1 else
val temp = pow(3, m / 2)
temp * temp *

(if (isOdd(m)) 3 else 1)}
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val result0 = 27
val result1 = pow3(x)
val result2 = (x * x) * x
// ...

}

This could greatly benefit the runtime because the entire function no longer need to be evaluated from
scratch every time the same program is run.

Now, what if we apply partial evaluations to interpreters? Suppose we have a partial evaluator called Mix,
which accepts as first parameter the set of specializing parameters and the second parameter as the source
program. It turns out that we obtain the ability of compiling any source code into target! More formally,

Target = [[Mix(Int, Src)]],

where Target is the target program, Int is the interpreter, and Src is the source program. This is called the
first Futamura Projection, which has a history as old as the Relational Model (Futamura, 1999).

Lightweight Modular Staging (LMS): LMS is a framework for staged compilation. For arbitrary type
T, LMS makes a distinction between T, which represents terms evaluated at generation time, and Rep[T],
which represents terms that will be generated. Rep[T] is automatically propagated through the type system,
which guarantees the correct transitive closures of partial evaluations.

The empowering techniques behind LMS is Scala-Virtualized (Rompf et al., 2012). It combines shallow
embedding and deep embedding, two DSL implementation options, by generalizing the concept of function
and function calls to flow construct like for and if. This transforms every statement to be a pure function
call, which could be further override to construct deep embedded Abstract Syntax Trees (AST). Therefore, it
benefits from both the linguistic features of the host language and the opportunities for further optimizations
and transformations. With Scala-Virtualized, LMS constructs deeply-embedded ASTs for the terms of
Rep[T] type, which goes through multi-stage optimizations and finally transformed to target language
source code by codegen.

Souffle: Souffle (Jordan et al., 2016) is a variant of Datalog implemented in C++ that supports both running
with interpreter mode and compiler mode. Given the source code, Souffle will first lower the declarative
Datalog programs into execution plans in the form of an imperative intermediate representation (IR). After
the IR is synthesized, Souffle will either interpret the IR directly or compile them further down to C++
programs. The authors claimed that the key technique for this transpilation is also Futamura projection.
However, instead of utilizing the full strength of the compile-time computation, Souffle relies on the more
limited C++ template metaprogramming for partially specifying semantics details. For example, Souffle
uses the C++ template to specifying the schema of tuples that a B-tree should contain and the partial order
on that tuple. However, the remaining parts, such as whole program structure, plan-execution logic, are
specified with naive string concatenation.

String concatenation for source-to-source compilation has many problems: first, it may suffer from the
scoping problems, because the host language scoping and the target language scoping are independent to
each other and therefore many subtle issues may occur during the reasoning of the scoping: essentially,
programmers are writing their programs in two orthogonal languages in a single file. Moreover, simple
source-to-source compilation from the execution plan to target code, if done mechanically, loses further
optimization opportunities at the target code level like dead code elimination or common subexpression
elimination.

LegoBase, DBLAB, and LB2: They are all previous works in compiling SQL queries to low-level code
using Scala. LegoBase (Shaikhha et al., 2018) is the antecedent in proposing to use high-level language for
compiling low-level code with Futamura projections. LegoBase and LB2 both use LMS as their backbones
for Futamura projection and does the compilation in one pass, while DBLAB uses multiple passes and IRs
to lower the abstraction level one stage by one stage, allowing for optimizations and refinements at different
stages.
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Similar to LegoBase and DBLAB but different from LB2, Sdl starts from the execution plan instead of the
declarative program in Datalog. This is because there have been a large amount previous works done in
synthesizing the optimal execution plan and the use of high-level language shouldn’t be considered a barrier
to be employed in these optimizers. Instead, the critical usage of low-level language is mainly from the
concerns of efficiency, which is the problem many previous works on abstraction without regrets and we
want to attack. Therefore, we choose to only focus on the phases after optimization has been applied. The
difference between Sdl and LegoBase or DBLAB is that the execution plan we starts from is imperative and
thus more low-level, having constructs like for...in, if and their variants. The choice of imperative plan
gives the optimizers more freedom to optimize the execution order while Sdl could be more concentrated at
the code generation part.

3 Sdl Compiler

I propose Sdl, a Datalog compiler that utilizes LMS. Sdl use Souffle both as the frontend parser of Datalog
programs and synthesizer of execution plans. The output of Souffle is parsed back to Sdl using Scala
parser combinator library and then Sdl runs the parsed execution plan on a definitional interpreter. The
interpreter is abstract and only follows the minimal semantics the plan specifies and left many details for
further interpretation. This gives programmers the freedom of substituting current implementations with
new implementations and experiment with new implementations without tweaking the semantics. Then, I
adapt the interpreter to the LMS framework and annotate only a few types with Rep[T] manually. Types
of the remaining terms will be automatically inferred by Scala’s type system.

LMS framework only provides basic Scala-to-C transformation building blocks so I need to extend LMS a little
bit to provide constructs that directly corresponds to some specific C parts. This is indeed very powerful
since it provides the programmers with a full control of the implementation details. Thus, programmers
benefits from the high-level abstractions (See section 4) while not losing access to low-level details. Finally,
all of the code generation time abstractions like ones mentioned above will be optimized away.

As shown by the first Futamura projection, the adapted interpreter built upon LMS now can transform
execution plans to efficient C programs. We thus obtained a compiler from the definitional interpreter for
free.

4 Abstraction without regret

In this section, I’ll discuss a few benefits of abstraction without regret that I learn from the implementation
of Sdl, which includes zero-overhead abstraction and a full control of low-level details.

4.1 Zero-cost Abstraction

The emergence of system languages that provides language support for high-level abstractions demonstrates
the popularity of zero-cost abstraction. For example, Rust provides facilities like algebraic datatype, higher-
order functions and an advanced type system, while not only provides high-level abstractions but also ensures
an execution speed competitive to C code. My project provides an alternative approach to the same idea:
instead of using a language that has both features of a high-level and a low-level languages, we can separate
our concerns for abstractions and efficiencies and address them in two different languages. Essentially, we
programmed in one high-level source language and lower the program into the counterpart in a low-level
target language.

In practice, this syntax-directed translation process is mechanical, because there are often one-to-one map-
ping between the source and target language, and they can be implemented when there are not. This provides
a powerful mechanism for extending a low-level language with high-level abstractions. For example, consider
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Supported Statements and Operators Description

Statement

LOAD DATA FOR rel FROM filename load data
STORE DATA FOR rel TO filename store data
CLEAR rel clear a relation
SWAP (relA, relB) swap two relations
QUERY op embodies a query operator
LOOP stmts END LOOP infinite loop
EXIT cond exit the loop when cond holds

Operator

FOR id IN rel relation scan
FOR id IN rel ON INDEX (id.i = expri,
. . .)

relation scan on index (i,. . . )
with value (expri,. . . )

CHOICE id FROM rel WHERE cond find a value such that cond holds

CHOICE id FROM rel ON INDEX (id.i =
expri, . . .) WHERE cond

find a value on index (i,. . . ) with
value (expri,. . . ) such that cond
holds

IF cond proceeds if the condition holds
PROJECT (expri,. . .) INTO rel Insert a tuple into a relation

Figure 1: Operators and Statements Supported by Sdl

the case that we want to use the higher-order function facility that is also dependent on the runtime in
LMS1, I could implement closure conversions (Appel, 1991) as part of the translation process, which will
compile higher-order functions into first-order ones. This translation process could be seen as a parallel to
macro expanding, which is another approach to metaprogramming. However, LMS not only ensures execu-
tion efficiency of the generated code through partial evaluation, but also promises syntactic soundness like
correct lexical scoping and semantic soundness, given the original program is sound (possibly guaranteed by
the source language, e.g., type soundness) and the translation process is sound. It is also worth noticing that
LMS is implemented as a Scala library, and it’s thus highly customizable in terms of the translation process
and the type of target language, making it as flexible as macro expanding.

Another benefits of my approach of using Futamura projection is that many abstractions can be optimized
away. This property makes all the abstractions zero-cost as long as they are runtime independent. As it
turns out in developing Sdl, most abstractions will exist only in the code generation time, because these
abstractions are introduced for administrative sake, such as maintaining a manager interface of hash tables
or information hiding of the underlying data structure implementations. Such abstractions are necessary
because they more or less alleviate developers’ burdens and increase productivity and maintainability. How-
ever, they will cause a substantial amount of runtime cost if not optimized away, even though they are not
essential to the computation of final results.

4.2 Full control of low-level details

During the implementation of Sdl, I observe that it’s very simple to extend the source language with target
language features that does not has corresponding part in source language. For instance, a major difference
between high-level languages like Scala and low-level languages like C is memory management, where high-
level languages usually use automatic garbage collection and low-level languages require manual management.
This problem can be handled easily by declaring a new node type with its associated constructor interface
and code generation templates in LMS. This node type will be mixed into the constructed ASTs in LMS,
which will be translated into target code per generation templates.

Taking advantage of the extensibility of LMS, I achieve a full control of low-level details. Consequently, the
final generated programs can be precisely manipulated to achieve maximal flexibility. For instance, there

1Though we utilizes higher-order functions in Sdl, they do not occur in the generated C programs
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Datalog Program

Souffle Parser and Optimizer Sdl compiler C compiler (clang)

Executable

Execution Plan optimized C program

Figure 2: Overall pipeline of Sdl.

are two ways of implementing arrays in C, i.e., by declaring a static array with fix size or mallocing a new
space and manually manage the memory. Static array allows for automatic resource memory management
with scoping, while dynamical array allocation requires manual memory management, but is suitable for
implementing growable lists. Such low-level manipulation decisions can be reflected with little effort in the
implementation by substituting with appropriate code generation templates.

5 Implementation details

Figure 2 shows the pipeline. The Datalog programs will be parsed into Souffle, which will go through
multi passes for optimizations and be lowered into an execution plan. The execution plan IR outputted by
Souffle encodes a semi-naiv̈e evaluation strategy and consists of a set of common imperative operators like
FOR, CHOICE, IF and their indexed version. Figure 1 shows statements and operators that are currently
supported. Expressions in the table include constants, variable reference, common arithmetic operators and
wildcard ⊥, while conditions include boolean operators, inequality predicates and predicates for testing if
a tuple is in a relation and if a relation is empty. Indexes will be automatically inferred from the entire
execution plan.

The execution plan is then sent to Sdl, and Sdl will interpret the plan according to the semantics of
statements and operators. Currently, Sdl uses a variant of naiv̈e hash table for indexing and existential
queries: for each relation, Sdl will create multiple indexing bucket arrays that all shares a same entry pool
that contains tuples in the relation.

To implement the query compiler, I first implement an execution plan interpreter, in which high-level ab-
stractions are widely used, including traits, inheritance, higher-order functions, and generics. These facilities
hugely improves code reuse and conciseness. Then, to make the Sdl interpreter a compiler, I adapted it to
the Lightweight Modular Staging (LMS) framework. I also added to LMS a moderate number of customized
extensions that supports string hashing, string comparisons, etc. Given the interpreter and the Datalog pro-
gram, LMS will apply many optimizations like common subexpression elimination and dead code elimination
to synthesize an optimized C program, which will be compiled by a C compiler like clang.

6 Results

All the benchmarks are tested on Macbook Pro mid-2015 version with Intel Core i7-4870HQ and 16GB
memory. We set the bucket size to be 222 by default but 214 for temporary relations (e.g. delta relations for
each iteration). Also, I use

h(a1...n) = p1 ∗ h(a1...n−1) + an + p2

as our hash function and pick two small prime 19260817 and 233 for p1 and p2.

The six test cases are collected from the original test suites that are used to evaluate Souffle (souffle con-
tributors, [n.d.]). For each of the adapted benchmarks, we evaluate on the small-size (exp. ≤ 1min) case
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Souffle Interpreter Souffle Compiler Sdl Compiler
cprog1 (small) 5.6s 1.0s 0.2s

cprog1 (medium) 267.1s 65.7s 6.3s
cprog5 (small) 106.1 6.3 3.3s

cprog5 (medium) 332s TO TO
tc (small) 15.0s 3.3s 3.3s

tc (medium) 951.5s 195.5s TO
tak (small) 6.7s 0.6s 0.2s

tak (medium) 837.3s 62.2s 27.8s
topological_order (small) 10.4s 5.2s 3.0s

topological_order (medium) 836.5s 579.2s TO
cellular_automata (small) 5.9 0.7 0.3

cellular_automata (medium) 345.4 38.5 3.2

Figure 3: Execution time for programs run by Souffle interpreter, C/C++ programs generated by Souffle
compiler and Sdl. TO stands for timeout. In particular, on cprog5 (medium) and tc (medium), two cases
where Sdl timeout, we achieve an execution time of 97.6s and 53.0s respectively after increasing the bucket
size of hash tables for temporary relations.

and medium-size cases (exp. ≤ 10 min) due to time limitations. Finally, I tested Sdl against executables
generated by Souffle compiler and Datalog programs run under Souffle’s interpreter mode.

Figure 3 shows the result. In particular, on all of the small cases, Sdl achieves ∼1.7X speedup compared to
Souffle compiler and 14.5X speedup compared to Souffle interpreter. For medium-size cases, Sdl achieves
speedups on all the test cases that it does not time out. Although lacking further investigations, we believe
the time differences are preliminary and may largely be attributed to the parameters of hash tables and
subtle performance gap between hash table in Sdl and B tree Souffle use. As a side note, after increasing
the bucket size for temporary relations, results for Sdl on topological_order (medium) and tc (medium)
are improved from timeout to be 97.6s and 53.0s, achieving a speedup of 5.1X with regard to the Souffle
compiler and 11.9X with regard to the Souffle interpreter.

It’s also interesting to see that although the Souffle interpreter has a bad performance on most cases due to
interpretation overhead, there is one case, namely cprog5 (medium) that Souffle interpreter performs better
than other competitors, all of which timeout. This unexpected result is reproduced for several times and
I believe this may be due to runtime analysis and optimizations the interpreter does, which may not be
implemented in the compiled version. It will thus be a future direction to work on add the support for
runtime analysis of relation size and optimizes parameters to Sdl accordingly.

7 Discussion

Although Sdl does require radically less runtime on many test cases, My evaluation is still preliminary
and does not implies that our tool outperforms current state-of-the-art Datalog compilers and interpreters
generally. I believe most different may be due to the nuances between hash table and data structures used
in Souffle. This is also suggested by the superiority of Datalog interpreter on cprog5 (medium) test case,
where Sdl timeout. Therefore, my implementation of the hash table is highly sensitive to the actual data.
A future direction will thus be to implement a more robust data structures as well as runtime optimizations
for Sdl.
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8 Conclusion

I propose Sdl Datalog compiler, which achieves high efficiency that is comparable to state-of-the-art tools
and uses high-level abstractions that traditional database systems are inclined not to use. To implement Sdl,
I simply implement a naiv̈e definitional interpreter. With the use of Futamura projection, this interpreter is
transformed into a compiler that synthesizes highly-optimized C code from Datalog programs. This allows
us to rely on many high-level abstractions in our implementation of the interpreter without affecting the
efficiency of compiled code, since all these abstractions will be optimized away. Then, I discusses several
benefits of my approach and benchmark on Sdl. It turns out that Sdl has a promising performance compared
with state-of-the-art tools.
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