
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

Your next e-graph framework looks like Datalog
Yihong Zhang

University of Washington
USA

yz489@cs.washington.edu

Recent years have seen a rejuvenation of e-graphs in many
areas, ranging from floating-point arithmetic [14] to ma-
chine learning compiler [16] and from computational fab-
rication [11] to rule synthesis [12]. Several e-graph frame-
works emerge as a result [3, 6, 15]. Among these frameworks,
egg, the e-graph framework that first introduced the idea of
rebuilding and e-class analyses, greatly expands the capabil-
ity of the e-graph data structure by scaling up congruence
maintenance with novel algorithms and by providing an
extensible interface based on e-class analyses.

However, the wide variety of e-graph applications is plac-
ing new requirements on the capability of e-graph frame-
works. Some of these requirements are difficult to fulfill in
existing frameworks like egg. For example, applications like
e-graph–based tensor graph optimizations [16] use a stan-
dard extension to e-matching called multi-patterns, which
egg does not readily support (as of mid-Mar 2022). A pull
request was made recently in an attempt to support multi-
patterns. However, it requires modifications to the current
rewrite interface, and the proposed implementation does not
benefit from recent progress in e-matching [17]. As another
example, while equational reasoning is efficiently supported
in egg, non-symmetric reasoning like the logical implication
relation is fairly non-trivial and potentially inefficient in egg.
Yet practical reasoning may interleave symmetric relations
with non-symmetric ones. To remedy these deficiencies, we
need a radical change to the current interface. We call the
new interface design egg 2.0.
What could egg 2.0 look like? Advances in e-graph and

database researches give us some clues. In previous work
[17], we improved e-matching by reducing it to queries over
relational databases. This hints at the underlying connection
between e-graphs and relational databases. Moreover, Data-
log, a fixpoint-based relational language, is able to express
various non-symmetric relations (e.g., reachability) and can
compute them using efficient algorithms (e.g., the semi-naïve
evaluation algorithm [7]). Modern Datalog engines are also
being extended to support efficient equational reasoning. For
example, Soufflé has first-class support for efficient equiva-
lence relations [13]. Finally, the semiring [1, 8] and lattice
[4, 10] semantics of relational databases precisely capture
the monotonic nature of e-class analyses.

We argue that egg 2.0 should be a Datalog language. This
will at least have the following advantages.

EGRAPHS ’22, June 14–15, 2022, San Diego, CA, USA
2022.

1. A relational representation of e-graphs in Datalog
could improve the performance of e-matching asymp-
totically in many cases, as shown in our previous work
on relational e-matching.

2. The efficient evaluation algorithms designed for Data-
log, such as semi-naïve evaluations, could benefit rule
rewriting in e-graphs.

3. Rules in Datalog are naturally multi-patterns. This will
allow first-class support for multi-patterns, whose per-
formance will also benefit from relational e-matching.

4. Thewell-studied lattice semantics of relations supports
and in fact generalizes e-class analyses in egg.

As our first step, we built egg�1, a relational e-graph frame-
work on top of SQLite. In previouswork, we build a prototype
implementation for e-graphs with SQLite as well [17]. How-
ever, that prototype only supports basic e-graph operations
like insertion and merging. egg� significantly expands its
usability with support for match-apply iterations and multi-
patterns, which allows users to write real-world applications
like equality saturation. To our knowledge, this is the first
full-fledged e-graph framework fully on top of a relational
database.

egg� can be viewed both as a multi-pattern equational rea-
soning language for e-graphs and as a Datalog language with
an internalized notion of congruence. egg� has a Datalog-
like surface language, and it translates e-graph operations
into SQL statements, which are executed in SQLite. In egg�,
we use relation Add(𝑥1, 𝑥2, 𝑐) to represent a term Add(𝑥1, 𝑥2)
with e-class id 𝑐 . The associativity rule of Add can be speci-
fied as follows:

(Add 𝛼1 (Add 𝛼2 𝛼3))@𝛼4 ⇒ (Add (Add 𝛼1 𝛼2) 𝛼3)@𝛼4.

The annotation syntax 𝑝@𝛼 means that 𝛼 denotes the id of
(sub)pattern 𝑝 . The semantics of rules is as follows: for each
pattern on the left-hand side, substitute and populate pat-
terns on the right-hand side and unify the patterns annotated
with the same id.

egg� is performant. It uses a novel algorithm for perform-
ing batched rewrites. Such an algorithm is reminiscent of
the chase [2], a procedure used in relational databases for
repairing databases using functional dependency. It also uses
an efficient algorithm adapted from egg for maintaining con-
gruence. Both algorithms lay a solid foundation for efficient
computations in egg 2.0. egg� also demonstrates how far we

1Pronounced as egg lite.
1



111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

EGRAPHS ’22, June 14–15, 2022, San Diego, CA, USA Yihong Zhang

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

egg egg♯

Equational rewrites Datalog rules
Congruence rules Functional dependencies (FD)

E-classes User-defined sorts
E-class merges FD repair through unification
E-class analyses User-defined lattices

E-class analysis maintenance FD repair through lattice joins

Figure 1. The correspondence between constructs in egg
and in egg♯.

can push the limits of an in-memory database system and use
it as an e-graph engine. The preliminary benchmark shows
that, even with the overheads for interpretation, parsing,
and communication, egg� is within one order of magnitude
slower than egg, which is highly customized for the e-graph
workload.

egg� also exhibits some interesting designs. For example,
different from a traditional e-graph implementation, egg�
does not have a global union-find data structure. Instead, a
local union-find is created transiently during each rebuild-
ing. This challenges the traditional view that an e-graph is
a DAG of terms and an equivalence relation over the terms
[5]. In fact, the design of egg� demonstrates that the equiva-
lence relation in an e-graph can be avoided with aggressive
normalization. Moreover, although our current egg� imple-
mentation only supports congruence rules, we realized that
congruence is just a special kind of functional dependency
over the database. This again challenges the long-held belief
that congruence is an essential ingredient to e-graphs, inspir-
ing future designs for egg 2.0. We have discovered several
interesting non-congruent functional dependencies so far.
One of them is the destructor. For example, snoc, the dual
to cons, takes a list 𝑙 and returns 𝑥 and 𝑙 ′, the head and tail
of the list. In egg�, it is represented as snoc(𝑙, 𝑥, 𝑙 ′) and this
multi-output operator naturally has a functional dependency
𝑙 −→ 𝑥, 𝑙 ′, meaning that each 𝑙 uniquely determines both 𝑥

and 𝑙 ′. Unification (with injective rules) is another kind of
functional dependency that we find interesting. For example,
the unification closure of a type theory with function type
→ and type variables will have the following rule (besides
transitivity, reflexivity, and commutativity of ≡):

𝑒1 → 𝑒2 ≡ 𝑒 ′1 → 𝑒 ′2
𝑒1 ≡ 𝑒 ′1 ∧ 𝑒2 ≡ 𝑒 ′2

In egg�,→ is represented as a relation with three columns
𝑒1, 𝑒2, and 𝑐 , and the above rule is equivalent a functional
dependency from 𝑐 to 𝑒1 and 𝑒2. Unification is known in the
literature to be the dual to congruence [9]. The functional
dependency captures this duality: reversing the arrows in
functional dependencies in a congruence theory produces
its unification dual.

Based on the experience with egg�, we started a potential
design for egg 2.0, which we call egg♯2. egg♯ is an extension
to Datalog that provides a unified language for describing
congruence reasoning and e-class analyses based on func-
tional dependencies. Relations in egg♯ are annotated with
functional dependencies. Values in egg♯ are divided into sorts
and lattices. Sorts are uninterpreted and values of the same
sort can be unified. Relations whose dependent sets (columns
determined by other columns) have only sort values general-
ize e-classes in an e-graph, and relations whose dependent
sets have only lattice values generalize e-class analyses. In
other words, in egg♯, e-classes and e-class analyses are just
relations with different dependent sets.
When two values of the same sort are unified, they are

no longer distinguishable in egg♯. Such unification could
potentially break the integrity of functional dependencies,
i.e., multiple distinct tuples with the same determinant set
(columns that determine other columns) can exist after unifi-
cation. egg♯ remedies these violations. For each sort column
in the dependent set, egg♯ unifies the sort values in that col-
umn, which makes values in the column indistinguishable
and therefore unique again. For each lattice column in the
dependent set, the new, unique value for each column is
computed as the join of the lattice values in that column. As
a result, functional dependency repair in egg♯ unifies the
semantics of e-classes and e-class analyses.

egg♯ greatly expands the expressivity of egg: It has natural
support of multi-patterns thanks to the relational represen-
tation. As an extension to Datalog, it also supports various
kinds of reasoning expressible in Datalog, including non-
symmetric ones. Finally, lattice values in egg♯ generalize
e-class analyses. As an example, egg♯ allows interdependent
analyses, which are naturally expressed as egg♯ rules over
several analysis relations. In contrast, e-class analyses in egg
are not composable. With the new expressive power, egg♯
is able to express the classical type inference algorithm for
Hindley-Milner type systems.

egg♯ also benefits from the efficient evaluation algorithms
in Datalog. For example, a straightforward semi-naïve evalu-
ation algorithm for egg♯ exists, which may be unintuitive or
inefficient in the traditional representation of e-graphs.

In the talk, I will first describe issues with the current egg
interface. Next, I will introduce egg� and describe the algo-
rithms that make it practical. In particular, I will go through
the chase-like algorithms for match-apply iterations in equal-
ity saturation and the rebuilding algorithm in egg�. I will also
go through some alternative designs in egg�. Finally, I will
present egg♯’s early design, some example egg♯ programs,
and its evaluation algorithms.

2Pronounced as egg sharp.
2



221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

Your next e-graph framework looks like Datalog EGRAPHS ’22, June 14–15, 2022, San Diego, CA, USA

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

References
[1] Mahmoud Abo Khamis, Hung Q. Ngo, Reinhard Pichler, Dan Suciu, and

Yisu Remy Wang. 2022. Convergence of Datalog over (Pre-) Semirings.
In Proceedings of the 41st ACM SIGMOD-SIGACT-SIGAI Symposium
on Principles of Database Systems (Philadelphia, PA, USA) (PODS ’22).
Association for Computing Machinery, New York, NY, USA, 105–117.
https://doi.org/10.1145/3517804.3524140

[2] Michael Benedikt, George Konstantinidis, Giansalvatore Mecca, Boris
Motik, Paolo Papotti, Donatello Santoro, and Efthymia Tsamoura. 2017.
Benchmarking the Chase. In Proceedings of the 36th ACM SIGMOD-
SIGACT-SIGAI Symposium on Principles of Database Systems (Chicago,
Illinois, USA) (PODS ’17). Association for Computing Machinery, New
York, NY, USA, 37–52. https://doi.org/10.1145/3034786.3034796

[3] Alessandro Cheli. 2021. Metatheory.jl: Fast and Elegant Algebraic
Computation in Julia with Extensible Equality Saturation. Journal of
Open Source Software 6, 59 (2021), 3078. https://doi.org/10.21105/joss.
03078

[4] Neil Conway, William R. Marczak, Peter Alvaro, Joseph M. Hellerstein,
and David Maier. 2012. Logic and lattices for distributed programming.
In ACM Symposium on Cloud Computing, SOCC ’12, San Jose, CA, USA,
October 14-17, 2012. 1. https://doi.org/10.1145/2391229.2391230

[5] Peter J. Downey, Ravi Sethi, and Robert Endre Tarjan. 1980. Variations
on the Common Subexpression Problem. J. ACM 27, 4 (1 Oct. 1980),
758–771. https://doi.org/10.1145/322217.322228

[6] Kiran Gopinathan. [n.d.]. ego: e-graphs in OCaml. https://gitlab.com/
gopiandcode/ego

[7] Todd J. Green, Shan Shan Huang, Boon Thau Loo, and Wenchao
Zhou. 2013. Datalog and Recursive Query Processing. Found. Trends
Databases 5, 2 (nov 2013), 105–195. https://doi.org/10.1561/1900000017

[8] Todd J. Green, Grigoris Karvounarakis, and Val Tannen. 2007. Prove-
nance Semirings. In Proceedings of the Twenty-Sixth ACM SIGMOD-
SIGACT-SIGART Symposium on Principles of Database Systems (Beijing,
China) (PODS ’07). Association for Computing Machinery, New York,
NY, USA, 31–40. https://doi.org/10.1145/1265530.1265535

[9] Paris C. Kanellakis and Peter Z. Revesz. 1989. On the relationship of
congruence closureand unification. Journal of Symbolic Computation
7, 3 (1989), 427–444. https://doi.org/10.1016/S0747-7171(89)80018-5
Unification: Part 1.

[10] MagnusMadsen, Ming-Ho Yee, and Ondřej Lhoták. 2016. FromDatalog
to Flix: A Declarative Language for Fixed Points on Lattices. SIGPLAN
Not. 51, 6 (jun 2016), 194–208. https://doi.org/10.1145/2980983.2908096

[11] Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox,
Eva Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthe-
sizing Structured CAD Models with Equality Saturation and Inverse
Transformations. In Proceedings of the 41st ACM SIGPLAN Conference
on Programming Language Design and Implementation (London, UK)
(PLDI 2020). Association for Computing Machinery, New York, NY,
USA, 31–44. https://doi.org/10.1145/3385412.3386012

[12] Chandrakana Nandi, Max Willsey, Amy Zhu, Yisu Remy Wang, Brett
Saiki, Adam Anderson, Adriana Schulz, Dan Grossman, and Zachary
Tatlock. 2021. Rewrite Rule Inference Using Equality Saturation. Proc.
ACM Program. Lang. 5, OOPSLA, Article 119 (oct 2021), 28 pages.
https://doi.org/10.1145/3485496

[13] Patrick Nappa, David Zhao, Pavle Subotić, and Bernhard Scholz. 2019.
Fast Parallel Equivalence Relations in a Datalog Compiler. In 2019
28th International Conference on Parallel Architectures and Compilation
Techniques (PACT). 82–96. https://doi.org/10.1109/PACT.2019.00015

[14] Pavel Panchekha, Alex Sanchez-Stern, James R. Wilcox, and Zachary
Tatlock. 2015. Automatically Improving Accuracy for Floating Point
Expressions. SIGPLAN Not. 50, 6 (June 2015), 1–11. https://doi.org/10.
1145/2813885.2737959

[15] Max Willsey, Chandrakana Nandi, Yisu Remy Wang, Oliver Flatt,
Zachary Tatlock, and Pavel Panchekha. 2021. Egg: Fast and Extensible
Equality Saturation. Proc. ACM Program. Lang. 5, POPL, Article 23 (jan

2021), 29 pages. https://doi.org/10.1145/3434304
[16] Yichen Yang, Phitchaya Mangpo Phothilimtha, Yisu Remy Wang, Max

Willsey, Sudip Roy, and Jacques Pienaar. 2021. Equality Saturation for
Tensor Graph Superoptimization. In Proceedings of Machine Learning
and Systems. arXiv:2101.01332

[17] Yihong Zhang, Yisu Remy Wang, Max Willsey, and Zachary Tatlock.
2022. Relational E-Matching. Proc. ACM Program. Lang. 6, POPL,
Article 35 (jan 2022), 22 pages. https://doi.org/10.1145/3498696

3

https://doi.org/10.1145/3517804.3524140
https://doi.org/10.1145/3034786.3034796
https://doi.org/10.21105/joss.03078
https://doi.org/10.21105/joss.03078
https://doi.org/10.1145/2391229.2391230
https://doi.org/10.1145/322217.322228
https://gitlab.com/gopiandcode/ego
https://gitlab.com/gopiandcode/ego
https://doi.org/10.1561/1900000017
https://doi.org/10.1145/1265530.1265535
https://doi.org/10.1016/S0747-7171(89)80018-5
https://doi.org/10.1145/2980983.2908096
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3485496
https://doi.org/10.1109/PACT.2019.00015
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/2813885.2737959
https://doi.org/10.1145/3434304
https://arxiv.org/abs/2101.01332
https://doi.org/10.1145/3498696

	References

