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MAPPING E-GRAPHS TO RELATIONS

An example e-graph. Each solid box denotes
an e-node and each dashed box denotes an
e-class, which represents a set of equivalent
terms. Labels at top-left corner denotes the
e-class id. Represented terms include

f(1,9(D), £(1,9(2), £(2,g(1)), etc.
(O(N?) in total).
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E-GRAPH & E-MATCHING

E-graph is a data structure that efficiently
represents sets of congruent terms.

E-graph has wide applications in automated relations.
theorem proving and program optimization.

E-matching is a fundamental operation of e-
graphs that searches for a pattern modulo
congruence.

Existing backtracking-based e-matching
algorithms rely on depth-first search over the e-
graph and fail to take equality constraints over
the pattern into consideration during query
planning.

CQS & GENERIC JOIN

Conjunctive query (CQ) is a restricted class
of relational queries that only involve joins of  a relational representation of e-graphs.

Generic join is an algorithm proposed by
Ngo et al. that computes CQs in worst-case
optimal time with respect to the output size.

Has great performance especially when the  generic joins as our solver subroutine.
CQis complex (e.g., cyclic).

REDUCING E-MATCHING TO CONJUNCTIVE QUERIES

Terms enumerated by backtracking-based
e-matching (O(N?) many)
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An e-matching pattern that matches all

expressions where

1. the 1stargumentto f is g and

2. the 2" argument of f and the 1%
argument of g refer to the same e-

class £(3,9(2))
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Tuples visited by relational
e-matching (O(N) many)
The conjunctive query derived from the R R
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pattern. Nested functions are flattened by
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RELATIONAL E-MATCHING

We propose relational e-matching, which reduces e-matching to CQs over

The CQ form of e-matching fully exploits the equality constraints over the
pattern, compared to existing backtracking-based algorithms where only the
structural constraints are considered during query planning.

To solve the complex CQs generated by relational e-matching, we use

Relational e-matching preserves the worst-case optimality of generic joins:
Fix a pattern p, let M(p, E) be the set of substitutions yielded by e-matching
on e-graph E with size n, relational e-matching runs in time

0 (max(IM(p, E)1)).
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BENCHMARK & RESULTS

We benchmarked with three representative e-matching
queries, collected from the test suite for mathematical
expressions of egg, a state-of-the-art e-graph framework.

On e-matching queries with equality constraints (the
cyclic and the non-linear acyclic cases), relational e-
matching achieve asymptotic speed-ups up to 426 X over
the baseline e-matching algorithm by exploiting the
equality constraints during query planning.

On e-matching queries without equality constraints (the
linear case), relational e-matching achieves similar
performance as the baseline e-matching.

Speed-ups over backtracking-based e-matching algorithm
(de Moura and Bjgrner)

Cyclic Non-linear acyclic Linear acyclic
Relational
400X - . i ™ e-matching
(@)}
c
‘= 300x
o
©
=
()
g
> 200x%
o
-
©
()
[
o
Y 100x
OX A . JEe-m—an—a
10> 10* d0° 107 10% J10° 10° 10* 16°

E-graph size (# e-nodes)

More details at

PAUL G. ALLEN SCHOOL

OF COMPUTER SCIENCE & ENGINEERING




