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1 Problem & Motivation
The congruence closure data structure, also known as the e-graph,

compactly represents a set of terms and an equivalence relation

over the terms. It is a central component of equality saturation-

based optimizers [13, 15]. It has been rejuvenated with the recent

egg framework and proven successful in many areas, including

floating-point arithmetic [12], ML compilers [16], and digital sig-

nal processors [14]. Such applications typically populate a large

number of equivalence classes (or e-classes). Therefore, the per-

formance of e-graph frameworks is key to the success of modern

e-graph based applications. E-matching, the procedure of perform-

ing pattern matching over an e-graph, is a major bottleneck in these

modern e-graphworkloads. In a typical application [15], e-matching

is responsible for 60–90% of the overall run time.

The wide variety of e-graph applications is also placing new

demands on the capability of e-graph frameworks. For example,

e-graph–based tensor graph optimizers [16] use a standard ex-

tension to e-matching called multi-patterns. Efficient support for

multi-patterns requires complicated modification of the basic back-

tracking algorithm provided. Most existing frameworks either do

not support multi-patterns or support them inefficiently. As another

example, practical applications may interleave equational reasoning

with non-equational ones. However, non-equational reasoning like

logical implication is fairly non-trivial and potentially inefficient in

existing e-graph frameworks like egg.
To improve the performance and expressiveness of e-graphs,

we argue that a systematic approach to e-graphs should be based

on relational databases. As the first step, we propose to solve e-

matching on an e-graph by reducing it to answering conjunctive

queries on a relational database, named relational e-matching.
There are several benefits. First, by reducing e-matching to con-

junctive queries, we simplify e-matching by taking advantage of

decades of study by the database community. Second, the relational

representation unifies different kinds of constraints in e-matching

patterns and allows query optimizers to generate asymptotically

faster query plans in many cases. Finally, by leveraging the generic

join algorithm, a recent theoretical advance in the database com-

munity, our technique achieves the first worst-case optimal bound

for e-matching. This work is published at POPL 2022 [17].

The relational e-matching approach hints at the fundamental

connection between e-graphs and relational databases. However,

some pitfalls exist. To have both efficient e-graph update (update)

and efficient relational e-matching (query), one has to switch back

and forth between the e-graph to its relational representation. Such

cost can sometimes take a significant proportion of the run time,

potentially offsetting the benefit of our approach [17]. A single

self-contained relational representation is therefore desired to fully

enjoy the benefits of relational e-matching. We call this design
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relational e-graphs. There are several challenges to it. First, we
need to express operations over e-graphs in a relational manner. As

performance is critical, they further need to be executed efficiently.

From our experience, although e-graphs can be encoded in rela-

tional systems like Soufflé [10], they are far less efficient. Moreover,

e-class analysis, an important extension of e-graphs that allows

the user to express domain-specific logic, is widely supported in

state-of-the-art e-graph frameworks. Such extensions are critical to

the success of modern e-graph applications, and supporting them

in the relational representation is a necessity.

Our design is based on the following observations. First, Dat-

alog, a fixpoint-based relational language, is able to express non-

equational relations (e.g., reachability) and can compute them using

efficient algorithms, such as semi-naïve evaluations [6]. Modern

Datalog engines [10] are also being extended to support efficient

equational reasoning. Moreover, data dependencies in relational

databases generalize congruence and rewrite rules in e-graphs. Data

dependencies are extensively studied in the database community

and can be efficiently reasoned with the chase procedure [2]. Finally,

the lattice semantics of relational databases [8] precisely capture

the monotonic nature of e-class analyses.

We argue that the relational e-graphs design should be based on

Datalog with the lattice semantics and data dependencies. Besides

the superior performance of relational e-matching, our ongoing

research effort on relational e-graphs demonstrates that it has the

following advantages:

• Committing to a single relational representation avoids the cost

of converting between different representations.

• Efficient algorithms for Datalog like semi-naïve evaluations could

benefit rule rewriting in e-graphs by incrementalizing e-matching.

• Rules in Datalog are naturally multi-patterns. This will allow

first-class support for multi-patterns, whose performance will

also benefit from relational e-matching.

• The lattice semantics of relations subsume e-class analyses. Dat-

alog’s non-equational reasoning further expands the expressive

power of e-graphs.

The rest of the paper is organized as follows: Section 2 reviews

background on e-graphs and relational databases. Section 3 presents

relational e-matching, evaluates its performance, and discusses our

ongoing work on relational e-graphs. Section 4 concludes.

2 Background & Related Work

2.1 E-Graphs
Terms. Let Σ be a set of function symbols and𝑉 be a set of variables.

𝑇 (Σ,𝑉 ) is the set of terms inductively constructed using symbols

from Σ and variables from 𝑉 . A ground term is a term that contains

no variables, a non-ground term is a pattern, and an 𝑓 -term is one

whose top-level function symbol is 𝑓 .
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E-graphs. A congruence relation � is an equivalence relation over

ground terms where 𝑓 (𝑡1, . . . , 𝑡𝑛) � 𝑓 (𝑡 ′
1
, . . . , 𝑡 ′𝑛) whenever ∧𝑖 𝑡𝑖 �

𝑡 ′
𝑖
. An e-graph 𝐸 efficiently represents sets of terms in a congruence

relation. It consists of a set of e-classes. Each e-class consists of a set

of e-nodes, and each e-node consists of an 𝑛-ary function symbol

𝑓 and 𝑛 children e-classes. An e-node associated with function

symbol 𝑓 is called an 𝑓 -application e-node.

An e-node 𝑓 (𝑐1, . . . , 𝑐𝑛) is said to represent a term 𝑓 (𝑡1, . . . , 𝑡𝑛)
if e-class 𝑐𝑖 represents term 𝑡𝑖 . An e-class 𝑐 represents a term 𝑡 if

an e-node 𝑎 in 𝑐 represents term 𝑡 . Terms represented by the same

e-class are congruent. Figure 1a shows an e-graph representing the

set of terms (where [𝑁 ] = {1, 2, . . . , 𝑁 }):
[𝑁 ] ∪ {𝑔(𝑖) | 𝑖 ∈ [𝑁 ]} ∪ {𝑓 (𝑖, 𝑔( 𝑗)) | 𝑖, 𝑗 ∈ [𝑁 ]}.

In addition, all 𝑔-terms are equivalent, and all 𝑓 -terms are equiva-

lent. Note that the e-graph has size 𝑂 (𝑁 ), yet it represents Ω(𝑁 2)
many terms. In general, an e-graph is capable of representing expo-

nentially many terms in polynomial space.

One of the key challenges of relational e-graphs is efficient invari-

ant maintenance [15]. Algorithms based on e-graphs like equality

saturations [13] perform intensive rewrites to grow the e-graphs.

These workloads require efficient maintenance of the congruent

invariant under updates. In our approach, we translate e-graph

invariants into data dependencies and use a specialized chase pro-

cedure to efficiently maintain e-graphs under updates.

E-matching. E-matching performs pattern matching in an e-graph

and yields a set of substitutions. A substitution 𝜎 is a function

that maps variables to e-classes. Given a pattern 𝑝 , we use 𝜎 (𝑝)
to denote the set of terms obtained by replacing every occurrence

of variable 𝑣𝑖 in 𝑝 with terms in 𝜎 (𝑣𝑖 ). Given an e-graph and a

pattern 𝑝 , e-matching finds the set of all possible pairs (𝜎, 𝑟 ) such
that every term in 𝜎 (𝑝) is represented in the root e-class 𝑟 . For

example, matching the pattern 𝑓 (𝛼,𝑔(𝛼)) against the e-graph in

Figure 1a produces the 𝑁 substitutions, each with the same root

𝑐 𝑓 :
{
({𝛼 ↦→ 𝑗}, 𝑐 𝑓 ) | 𝑗 ∈ [𝑁 ]

}
.

E-matching is a bottleneck in many e-graph based applications.

Several algorithms have been proposed for e-matching [3, 4, 9].

However, most algorithms implement some form of backtrack-

ing search, which is inefficient in many cases. Figure 2 shows an

abstract backtracking-based e-matching algorithm. It performs a

top-down search following the shape of the pattern and prunes

the result set of substitutions when necessary. Note that matching

pattern 𝑓 (𝛼,𝑔(𝛼)) against the example e-graph will produce only

𝑁 matches, yet the backtracking search runs in time 𝑂 (𝑁 2). In
contrast, relational e-matching runs in time 𝑂 (𝑁 ).

E-class Analyses. Many domain-specific applications use domain

knowledge when reasoning in e-graphs. Such domain knowledge

is expressed as e-class analyses. An e-class analysis annotates each

e-class with a (semi)lattice value. As the e-graph grows, knowledge

is introduced, propagated, and joined (by taking the least-upper

bound). To support e-class analyses in relational e-graphs is impor-

tant since many domain-specific applications rely on it.

2.2 Relational Databases
Conjunctive Queries. A relational schema 𝑆𝐷 over domain 𝐷 is a

set of relation symbols with associated arities. A relation 𝑅 under a
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Figure 1: (a) An e-graph over𝑇 (Σ, ∅), where Σ = {𝑓 , 𝑔, 1, . . . , 𝑁 }.
Each solid box denotes an e-node and each dashed box de-
notes an e-class. (b) Relation of 𝑓 . (c). Relation of 𝑔.

match(𝑥, 𝑐, 𝑆) ={𝜎 ∪ {𝑥 ↦→ 𝑐 } | 𝜎 ∈ 𝑆, 𝑥 ∉ dom(𝜎) } ∪
{𝜎 | 𝜎 ∈ 𝑆, 𝜎 (𝑥) = 𝑐 }

match(𝑓 (𝑝1, . . . , 𝑝𝑘 ), 𝑐, 𝑆) =
⋃

𝑓 (𝑐
1
,...,𝑐𝑘 )∈𝑐

match(𝑝𝑘 , 𝑐𝑘 , . . . ,match(𝑝1, 𝑐1, 𝑆))

Figure 2: A declarative backtracking-based e-matching algo-
rithm (reproduced from [3]). The set of substitutions for pat-
tern 𝑝 on e-graph𝐺 with e-classes𝐶 can be obtained by com-
puting

⋃
𝑐∈𝐶 match(𝑝, 𝑐, {∅}).

tc(𝑥, 𝑦) ← edge(𝑥, 𝑦)
tc(𝑥, 𝑦) ← edge(𝑥, 𝑧), tc(𝑧, 𝑦)

Figure 3: A Datalog program that computes the transitive
closure of edge.

schema 𝑆𝐷 is a set of tuples 𝒕 ∈ 𝑅. A database instance (or simply

database) 𝐼 of 𝑆𝐷 is a set of relations under 𝑆𝐷 .

A conjunctive query 𝑄 over the schema 𝑆𝐷 has the form:

𝑄 (𝒖) ← 𝑅1 (𝒙1), . . . , 𝑅𝑛 (𝒙𝒏),
where 𝒖 and 𝒙 𝒊 are lists of variables, and 𝑅𝑖 are relation symbols in

𝑆𝐷 . We call 𝑄 (𝒖) the head of the query, the remainder is the body.
Each 𝑅𝑖 (𝒙 𝒊) is called an atom. Variables that appear in the head are

called free variables, and they must appear in the body. Variables

that appear in the body but not the head are called bound variables.
Evaluating a conjunctive query yields substitutions that map

free variables in 𝑄 to elements in the domain such that there exists

a mapping of the bound variables that causes every substituted

atom to be present in the database.

Extensive research has been done on conjunctive queries. The

AGM bound [1] and worst-case optimal joins [11] are recent ad-

vances in database theory. The AGM bound characterizes the worst-

case output size of a conjunctive query, and worst-case optimal

join is an algorithm that achieves this bound. As we will show,

they allow us to derive new bounds for e-matching and guarantee

worst-case optimality of relational e-matching.

We observe that conjunctive query and e-matching are struc-

turally similar: both search for substitutions whose instantiations

are present in a database. Therefore, it is tempting to reduce e-

matching to a conjunctive query over the relational database, thereby

benefiting from well-studied techniques from the database commu-

nity, including join algorithms and query optimization.

Datalog and Semi-Naíve Evaluations. A Datalog program is a set of

conjunctive queries whose head refers to relations in 𝑆𝐷 . Figure 3

shows an example Datalog program that computes the transitive
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closure of the relation edge. It is inductively defined as follows: (1)

if there is an edge from 𝑥 to𝑦, then𝑦 is in 𝑥 ’s transitive closure, and

(2) if there is an edge from 𝑥 to 𝑧, and 𝑦 is in 𝑧’s transitive closure,

then 𝑦 is also in 𝑥 ’s transitive closure.

The semantics of Datalog is well studied, and many semantic

extensions are proposed [7, 8]. The database community has also

extensively studied efficient evaluation and optimization algorithms

for Datalog programs. Particularly, semi-naïve evaluation [6] uses

monotonicity to incrementalize the iterative evaluation of Datalog

programs so that no work is duplicated across each iteration.

Data Dependencies and the Chase. Data dependencies describe

dependencies between columns in a relational database. Tuple-
generating dependencies (TGDs) generalize Datalog rules with multi-

heads and existential quantifiers. For example,

∃𝑏.supervise(𝑎, 𝑏), employee(𝑏) ← employee(𝑎)
asserts that every employee 𝑎 will be supervised by 𝑏, who is also

an employee. Functional dependency (FD) is another kind of de-

pendencies that identifies a relation’s “determinant columns”. For

example,

𝑏1 = 𝑏2 ← supervise(𝑎, 𝑏1), supervise(𝑎, 𝑏2)
indicates that if 𝑎 is supervised by 𝑏1 and 𝑏2, then 𝑏1 and 𝑏2 are

the same person. In other words, 𝑎 functionally determines their
(unique) supervisor.

In relational e-graphs, data dependencies generalize congru-

ence and rewrite rules. Data dependencies can be efficiently rea-

soned about using the chase. Variants of the chase exist, leading to

slightly different semantics. Our evaluation algorithm for relational

e-graphs can be viewed as a chase procedure specialized to the

semantics of e-graphs.

Lattice Semantics of Datalog. Flix extends Datalog by allowing the

last column of a relation to be lattices, which can grow over time

with rule derivations [8]. Lattices in Flix capture the monotonicity

of many program analysis algorithms that are either inefficient or

difficult to express in classical Datalog.

3 Approach and Uniqueness
In this section, we first introduce relational e-matching [17] and

evaluate its performance. Next, we present our early designs on

relational e-graphs.

3.1 Relational E-matching
E-matching via top-down backtracking search is inefficient be-

cause it visits obviously unsatisfying terms. For example, on pattern

𝑓 (𝛼,𝑔(𝛼)), whenever there are many terms that have the shape

𝑓 (𝛼,𝑔(𝛽)) where 𝛼 is not necessarily equivalent to 𝛽 , backtracking

will waste time visiting terms that do not yield a match.

We propose to view e-matching as conjunctive query answering:

we represent every 𝑛-ary function symbol 𝑓 as a relation 𝑅𝑓 with

𝑛 +1 columns. Every 𝑓 -application e-node is now a tuple in 𝑅𝑓 . The

first 𝑛 columns denote the e-class labels of children of 𝑛𝑓 . The last

column denotes the e-class label of 𝑛𝑓 . Figures 1b and 1c show the

relational representation of the e-graph in Figure 1a.

Under this relational view, an e-matching problem comes out as

a conjunctive query naturally. For example, the pattern 𝑓 (𝛼,𝑔(𝛼))
corresponds to conjunctive query:𝑄 (root, 𝛼) ← 𝑅𝑓 (𝛼, 𝑥, root), 𝑅𝑔 (𝛼, 𝑥).

Compile(𝑝) = 𝑄 (𝑣1, . . . , 𝑣𝑘 , root) ← atoms

where 𝑣1 . . . 𝑣𝑘 are variables in 𝑝

and Aux(𝑝) = root ∼ atoms

Aux(𝑓 (𝑝1, . . . , 𝑝𝑘 )) = 𝑣 ∼ 𝑅𝑓 (𝑣1, . . . , 𝑣𝑘 , 𝑣), 𝐴1, . . . , 𝐴𝑘

where 𝑣 is fresh and Aux(𝑝𝑖 ) = 𝑣𝑖 ∼ 𝐴𝑖

Aux(𝑥) = 𝑥 ∼ ∅ where 𝑥 is a pattern variable

Figure 4: Compiling a pattern to a conjunctive query.

Evaluating 𝑄 with a simple hash join strategy exemplifies the ben-

efits of the relational approach. The hash join will only consider

terms that fully match the pattern and so is asymptotically bet-

ter: it builds indices on (𝛼, 𝑥) for 𝑅𝑓 and performs a linear scan

through 𝑅𝑔 for matches. Figure 4 shows the compilation algorithm

that unnests an e-matching pattern to a conjunctive query.

This observation leads us to a very simple algorithm for relational

e-matching. Relational e-matching takes an e-graph 𝐸 and a set of

patterns ps. It first transforms the e-graph to a relational database

𝐼 . Then, it reduces every pattern 𝑝 to a conjunctive query 𝑞. Finally,

it evaluates the conjunctive queries over 𝐼 .

Answering CQs with Generic Join. We propose to use generic join,

an efficient worst-case optimal join algorithm, to solve the gener-

ated conjunctive queries. Traditional query plans, which are well-

adopted and based on two-way joins such as hash joins and merge-

sort joins, may suffer on certain queries compiled from patterns. For

example, the pattern 𝑓 (𝑔(𝛼), ℎ(𝛼)) compiles to a cyclic conjunctive

query: 𝑄 (𝛼, root) ← 𝑅𝑓 (𝑥,𝑦, root), 𝑅𝑔 (𝛼, 𝑥), 𝑅ℎ (𝛼,𝑦). For any such

query, [11] shows there exist databases on which any two-way join

plan is suboptimal. In contrast, generic join is guaranteed to run

in time linear to the worst-case output size. Moreover, generic join

can have comparable performance on acyclic queries with two-way

join plans. These properties make generic join our ideal solver for

conjunctive queries generated from e-matching patterns.

Complexity of Relational E-matching. Relational e-matching pre-

serves the worst-case optimality generic join guarantees:

Theorem 1. Relational e-matching is worst-case optimal; that
is, fix a pattern 𝑝 , let 𝑀 (𝑝, 𝐸) be the set of substitutions yielded by
e-matching on an e-graph 𝐸 with 𝑁 e-nodes, relational e-matching
runs in time 𝑂 (max𝐸 ( |𝑀 (𝑝, 𝐸) |)).

The structure of e-matching patterns lets us derive an additional

bound dependent on the actual output size rather than the worst-

case output size.

Theorem 2. Fix an e-graph 𝐸 with 𝑁 e-nodes that compiles to a
database 𝐼 , and fix a pattern 𝑝 that compiles to conjunctive query
𝑄 (𝑋 ) ← 𝑅1 (𝑋1), . . . , 𝑅𝑚 (𝑋𝑚). Relational e-matching 𝑝 on 𝐸 runs in

time 𝑂
(√
|𝑄 (𝐼 ) | × Π𝑖 |𝑅𝑖 |

)
≤ 𝑂

(√
|𝑄 (𝐼 ) | × 𝑁𝑚

)
.

Supporting Multi-patterns. Multi-patterns are a widely used exten-

sion to e-matching [3, 16]. A multi-pattern is a list of patterns of

the form (𝑝1, . . . , 𝑝𝑘 ) that are to be simultaneously matched. For ex-

ample, e-matching the multi-pattern (𝑓 (𝛼, 𝛽), 𝑓 (𝛼,𝛾)) searches for
pairs of two 𝑓 -applications whose first arguments are equivalent.

Efficient support for multi-patterns on top of backtracking search

requires complicated additions to state-of-the-art e-matching al-

gorithms [3], and they are suboptimal in many cases. Relational

3



Yihong Zhang

e-matching supports multi-patterns “for free”: a multi-pattern is

compiled to a single conjunctive query just like a single pattern.

For example, multi-pattern (𝑓 (𝛼, 𝛽), 𝑓 (𝛼,𝛾)) naturally compiles to

𝑄 (𝛼, 𝛽,𝛾, root1, root2) ← 𝑅𝑓 (𝛼, 𝛽, root1), 𝑅𝑔 (𝛼,𝛾, root2). This shows
the wide applicability of the relational e-matching approach.

3.2 Evaluation
We implemented relational e-matching inside the egg equality sat-

uration toolkit [15]. Our implementation consists about 80 lines of

Rust inside egg itself to convert patterns into conjunctive queries

and a separate, e-graph-agnostic Rust library to implement generic

join in fewer than 500 lines. egg’s existing e-matching infrastructure

is also about 500 lines of Rust, and it is interconnected to various

other parts of egg. Qualitatively, we claim that the relational ap-

proach is simpler to implement, especially since the conjunctive

query solver is completely modular.

In this section, we refer to egg’s existing e-matching implemen-

tation as “EM” and our relational approach as “GJ.”

Setup. We use patterns from math and lambda, egg’s two largest

benchmark suites. To construct the e-graphs in the benchmarks

we ran equality saturation on a set of terms selected from egg’s
test suite, stopping before the e-graph reached 1e5, 1e6, 2e6, and

3e6 e-nodes. The result is four increasingly large e-graphs for each

benchmark suite filled with terms generated by the suite’s rewrite

rules. For each benchmark suite and each of the four e-graph sizes,

we then ran e-matching on the e-graph using both EM and GJ. We

ran each approach 10 times and took the minimum run time.

For GJ, we ran each trial twice. The first time builds the indices

necessary for generic join just-in-time, and the run time includes

that. On the second trial, GJ uses the pre-built index tries from the

first run, so the time to build them is excluded.

Results. Figure 5 shows the results of our benchmarking experi-

ments. Each group of bars shows the results of e-matching a single

pattern on 4 increasingly large e-graphs (top to bottom), comparing

egg’s built-in e-matching (EM) with relational e-matching using

generic join (GJ). The orange bar shows the multiplicative speedup

of our approach: EM/GJ. The blue bar shows the same, but ex-
cluding the time spent building the indices needed for generic join:

EM/(GJ− idx). The text above each group of bars shows the pattern
itself and the number of substitutions found on the largest e-graph;

the patterns are sorted by this quantity.

Relational e-matching can be up to 6 orders of magnitude faster

than traditional e-matching on complex patterns. Speedup tends to

be greater when the output size is smaller, and when the pattern

is larger and non-linear. A large output indicates the e-graph is

densely populated with terms matching the given pattern, there-

fore backtracking search wastes little time on unmatched terms,

and using relational e-matching contributes little or no speedup.

Large and complex patterns require careful query planning to be

processed efficiently. For example, the pattern experiencing the

largest speedup in Figure 5 is 4 e-nodes deep with 4 occurrences of

the variable 𝑓 . Relational e-matching using generic join can find a

query plan that puts smaller relations with fewer children on the

outer loop, thereby pruning down a large search space early. In

contrast, backtracking search must traverse the e-graph top-down.
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1 results (* -1 (cos x))

1 results (i (cos x) x)

1 results (i (sin x) x)

1 results (d x (ln x))

3 results (* x (/ 1 x))

7 results (i (pow x c) x)

7 results (/ (pow x (+ c 1)) (+ c 1))

139 results (* (pow f g) (+ (* (d x f) (/ g f)) (* (d x g) (ln f))))

268 results (d x (pow f g))

850 results (* a (pow b -1))

11964 results (- (* a (i b x)) (i (* (d x a) (i b x)) x))

12366 results (- (i f x) (i g x))

19132 results (i (- f g) x)

22447 results (d x (* a b))

29781 results (+ (i f x) (i g x))

30090 results (i (* a b) x)

33028 results (pow a (+ b c))

34531 results (+ a (* -1 b))

48208 results (+ (* a (d x b)) (* b (d x a)))

64220 results (d x (+ a b))

65552 results (* (pow a b) (pow a c))

66794 results (i (+ f g) x)

2319353 results (+ (d x a) (d x b))

16571619 results (+ (* a b) (* a c))

38812991 results (* a (* b c))

56700069 results (* (* a b) c)

85406301 results (* a (+ b c))

162661687 results (+ a (+ b c))

164462582 results (+ (+ a b) c)

math

Figure 5

In some cases index building time takes a significant proportion

of the run time in relational e-matching, sometimes offsetting the

gains. Overall, relational e-matching remains competitive with the

index building overhead.

In summary, relational e-matching is almost always faster than

backtracking search, and is especially effective in speeding up com-

plex patterns.

3.3 Relational E-graphs
In this subsection, we will discuss some of our ongoing effort on

relational e-graphs. We built a prototype named egg (pronounced

as egg lite) and are designing a full-fledged language for relational

e-graphs named egg♯ (pronounced as egg sharp).

egg is an e-graph prototype on top of SQLite, an embedded

relational database system. egg has full-featured support for func-

tionalities like match-apply iterations and multi-patterns, allowing

users to write real-world applications like equality saturation. To

our knowledge, this is the first full-fledged e-graph framework fully

on top of a relational database.

egg can be viewed both as amulti-pattern language for e-graphs

and as a Datalog language with an internalized congruence. egg

has a Datalog-like surface language, and it translates e-graph op-

erations into SQL statements, which are executed in SQLite. As is

in relational e-matching, we use relation Add(𝑥1, 𝑥2, 𝑐) to represent

a term Add(𝑥1, 𝑥2) with e-class id 𝑐 . The associativity rule for Add
can be specified as

(Add 𝛼1 (Add 𝛼2 𝛼3))@𝛼4 ⇒ (Add (Add 𝛼1 𝛼2) 𝛼3)@𝛼4 .

The semantics of rules is as follows: for each pattern on the left-

hand side, substitute and populate patterns on the right-hand side,

and merge e-classes annotated with the same id (e.g., 𝛼4).

4



PLDI: U: Towards a Relational E-graph

egg egg♯

Equational rewrites Tuple-generating dependencies

Congruence rules Functional dependencies (FD)

E-classes User-defined sorts

E-class merges FD repair through unification

E-class analyses User-defined lattices

E-class analysis maintenance FD repair through lattice joins

Figure 6: The correspondence between egg and in egg♯.

egg is performant. Matching the left-hand side is essentially

relational e-matching. Moreover, it uses a novel batched rewriting

algorithm and an efficient algorithm for maintaining congruence.

Both algorithms can be viewed as chase procedures specialized

for reasoning about data dependencies in e-graphs. and lay a solid

foundation for efficient computations in relational e-graphs. egg

also demonstrates how far we can push the limits of an in-memory

database system as an e-graph engine. The preliminary benchmark

shows that, even with the overheads for interpretation, parsing,

and communication, egg is within one order of magnitude slower

than egg, which is highly customized for the e-graph workload.

egg also exhibits some interesting designs. For example, unlike

a traditional e-graph implementation, egg does not have a global

union-find data structure. Instead, a local union-find is created tran-

siently during each rebuilding. This challenges the traditional view

that an e-graph is a set of terms and an equivalence relation over

the terms [5]. Moreover, although our current egg implementation

only supports congruence rules, we realized that congruence is just

a special kind of FD over the database. This again challenges the

long-held belief that congruence rules are indispensable to e-graphs.

We have discovered several interesting non-congruent FDs so far,

which are useful for different scenarios.

Based on the experience with egg, we started a design for

relational e-graphs called egg♯ . In egg♯ , rewrite rules are expressed

as TGDs, and relations are annotated with FDs. Values in egg♯ are
divided into sorts and lattices. Sort values can be “unified” so that

they denote the same element in the underlying model. Relations in

egg♯ generalize both e-nodes and e-class analyses. For example, let

𝐸 be a sort for expressions and 𝐿max be the max lattice. 𝑅+ (𝐸, 𝐸) →
𝐸 is a ternary relation where the first two columns determine the

last column. It represents the binary + constructor of an e-graph.

lo(𝐸) → 𝐿max is a binary relation where the expression determines

its lattice value. This could denote an e-class analysis that computers

the lower bound of an expression e-class.

When two sort values are unified (e.g., during e-class merges),

they are no longer distinguishable. Such unification could poten-

tially break the integrity of FDs, i.e., multiple distinct tuples with

the same determinant columns. egg♯ remedies these violations. For

each sort column in dependent columns, egg♯ unifies the sort val-
ues in that column, making them indistinguishable and therefore

unique again. For each lattice column in the dependent columns,

the new, unique value for each column is computed as the lattice

join of values in that column. As a result, FD repair in egg♯ uni-
fies the semantics of e-classes and e-class analyses. We have also

developed a model semantics for egg♯ based on data dependencies.

egg♯ greatly expands the expressivity of egg: It has natural sup-
port of multi-patterns. As an extension to Datalog, it supports

reasoning expressible in Datalog, including non-equational ones.

Finally, lattice values in egg♯ generalize e-class analyses. As an

example, egg♯ allows interdependent analyses, while traditional
e-class analyses are not composable in general. With the new ex-

pressive power, egg♯ is able to express the classical type inference

algorithm for Hindley-Milner type systems.

egg♯ also benefits from the efficient semi-naïve evaluations in

Datalog. Semi-naïve evaluation incrementalizes the matching in

egg♯ . The literature has also considered algorithms for incremental

e-matching [3]. However, these optimizations are often complex to

implement and are inefficient when the e-graph grows rapidly, a

typical scenario in modern e-graph applications. In contrast, the

semi-naïve evaluation algorithm is straightforward to implement

and works well with batched updates.

4 Conclusion
This paper reviews our work on relational e-matching and discusses

our recent progress on relational e-graphs. The research presented

summarizes our work in PLDI 2021 SRC, a POPL 2022 paper, a

forthcoming EGRAPH workshop talk, and a research blog post. I

am the first or sole author of the above work.
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