
The Termination Problem of Equality Saturation is Undecidable

Yihong Zhang

Aug 11, 2023

In this note, we study the decidability of the termination of equality saturation and related problems.

Background
Term rewriting
A term rewriting system (TRS) 𝑅 consists of a set of rewrite rules. 𝑅 defines a rewrite relation →𝑅 as follows:
𝑢 →𝑅 𝑣 if and only if there exists a rule (𝑙 → 𝑟) ∈ 𝑅 and a substitution 𝜎 such that a subterm of 𝑢 at path 𝑝 is
𝑙𝜎, and 𝑣 is 𝑢 whose subterm at path 𝑝 is substituted with 𝑟𝜎. We omit the subscript 𝑅 when it’s clear from the
context. Let →∗ be the transitive closure of binary relation →. We define (←𝑅) = (→𝑅)−1, (↔𝑅) = (→𝑅) ∪ (←𝑅),
and (≈𝑅) =↔∗

𝑅. ≈𝑅 is an equivalence relation.

A normal form is a term that cannot be rewritten any further. We say 𝑛 is a normal form of 𝑡 if 𝑡 reduces to 𝑛
and 𝑛 is a normal form. A TRS 𝑅 is terminating if there is no infinite rewriting chain 𝑡1 →𝑅 𝑡2 → …. A TRS 𝑅 is
confluent if for all 𝑡, 𝑡1, 𝑡2, 𝑡1 ←∗

𝑅 𝑡 →∗
𝑅 𝑡2 implies there exists a 𝑡′ such that 𝑡1 →∗

𝑅 𝑡′ ←∗
𝑅 𝑡2. We call a confluent

and terminating TRS convergent. Terms in a terminating TRS have at least one normal form, terms in a confluent
TRS have at most one normal form, and terms in a convergent TRS have exactly one normal form.

We call a term rewriting system left-linear (resp. right-linear) if variables in the left-hand side (resp. right-hand
side) pattern of each rewrite rule occur only once. For example, 𝑅1 = {𝑓(𝑥, 𝑦) → 𝑔(𝑥)} is left-linear, while
𝑅2 = {𝑓(𝑥, 𝑥) → 𝑔(𝑥)} is not left-linear. A TRS is linear if it’s left-linear and right-linear.

Finite tree automata
A finite tree automaton (FTA) is a tuple 𝒜 = (𝑄, 𝐹 , 𝑄final, Δ), where 𝑄 is a set of states, 𝐹 is a set of function
symbols, 𝑄final ⊆ 𝑄 is a set of final states, and Δ is a set of transitions of the form 𝑓(𝑞1, … , 𝑞𝑛) → 𝑞 where
𝑞, 𝑞1, … , 𝑞𝑛 ∈ 𝑄. A term 𝑡 is accepted by 𝒜 if it can be rewritten to a final state 𝑞final ∈ 𝑄final of 𝒜, i.e.,
𝑡 →∗ 𝑞final ∈ 𝑄final. Since 𝑄 and 𝐹 can be determined by Δ, we omit them and use (𝑄final, Δ) to denote a FTA for
brevity. Let ℒ(𝒜) be the set of terms accepted by FTA 𝒜. A language 𝐿 is called regular if it is accepted by some
FTA (∃𝒜, 𝐿 = ℒ(𝒜)). When the set of transitions Δ is clear from the context, we further omit it and use ℒ(𝑐) to
denote the language accepted the tree automata 𝒜 = (𝑐, Δ).
Regular languages and FTAs are closed under union, intersection, and complementation. Moreover, it is possible
to define a tree automaton that accepts any term: it is the complement of an empty FTA. To give an explicit
construction, define

𝒜∗ = ({𝑞∗}, {𝑓(𝑞∗, … , 𝑞∗⏟
𝑛

) → 𝑞∗ ∣ 𝑛-ary symbol 𝑓 ∈ 𝐹})

for a fresh state 𝑞∗.

Left-regularity of a term rewriting system implies the regularity of its normal forms: Given a term-rewriting system
𝑅, the set of normal forms of 𝑅 is the complement of the set of rewritable terms, i.e., terms whose subterm match
some left-hand side patterns of 𝑅. Suppose 𝑅 is left-linear. The set of rewritable terms is regular. Since regularity
is preserved under complementation, the set of normal forms of 𝑅 is regular. Below is an algorithm that computes
a tree automata whose language is the set of normal forms. The construction here requires left linearity to ensure
that each “hole” in the left-hand side patterns can pick terms independently. For example, the set of rewritable
terms of rule 𝑓(𝑥, 𝑥) → 𝑥 is not regular.

1



Procedure termsMatchingPattern(𝑝)
Input: A linear pattern 𝑝.

Output: An FTA 𝒜 satisfying ℒ(𝒜) contains all terms matching the given pattern.

begin

1. case 𝑝 of

2. 𝑓(𝑝1, … , 𝑝𝑘) ⇒
3. (𝑞𝑖, Δ𝑖) ← termsMatchingPattern(𝑝𝑖) for 𝑖 = 1, … , 𝑘;

4. 𝑞 ← mkFreshState();
5. Δ ← {𝑓(𝑞1, … , 𝑞𝑘) → 𝑞} ∪ ⋃𝑖=1,…,𝑘 Δ𝑖;

6. return (𝑞, Δ);
7. 𝑥 ⇒ return 𝐴∗;

end

Procedure subtermsMatchingPattern(𝑝)
Input: A linear pattern 𝑝.

Output: An FTA 𝒜 satisfying ℒ(𝒜) contains all terms containing the given pattern.

begin

1. 𝑞final ← mkFreshState();
2. (𝑞𝑝, Δ) ← termsMatchingPattern(𝑝);
3. Δ ← Δ ∪ {𝑞𝑝 → 𝑞final};

4. for each 𝑛-ary symbol 𝑓 where 𝑛 > 0 do

5. for 𝑖 = 1, … , 𝑛 do

6. Δ ← Δ ∪ {𝑓(𝑞∗, … , 𝑞∗⏟
𝑖−1

, 𝑞final, 𝑞∗, … , 𝑞∗⏟
𝑛−𝑖

) → 𝑞final};

7. return (𝑞final, Δ);
end

Procedure normalForms(𝑅)
Input: A left-linear TRS 𝑅.

Output: An FTA 𝒜 satisfying ℒ(𝒜) is the set of normal forms of 𝑅.

begin

1. return ⋃lhs→rhs ∈ 𝑅 subtermsMatchingPattern(lhs);
end

E-graphs and equality saturation
We call an FTA deterministic if for every term 𝑡,

𝑡 →∗ 𝑞1 ∧ 𝑡 →∗ 𝑞2 → 𝑞1 = 𝑞2.

We call an FTA reachable for every state 𝑞 there exists a ground term 𝑡 such that 𝑡 →∗ 𝑞. An e-graph 𝐺 is a
deterministic and reachable FTA ({𝑞final}, Δ) with a single final state. Moreover, 𝐺 induces a relation ≈𝐺 defined

2



as follows: for any terms 𝑡1 and 𝑡2, if there exists a state 𝑞 in 𝐺 such that 𝑡1 →∗ 𝑞 ←∗ 𝑡2, then 𝑡1 ≈ 𝑡2
1. ≈𝐺 is an

equivalence relation: ≈𝐺 is symmetric and reflexive by definition. Moreover, if 𝑡1 →∗ 𝑞 ←∗ 𝑡2 and 𝑡2 →∗ 𝑞′ ←∗ 𝑡3,
since an E-graph is deterministic, 𝑡1 →∗ 𝑞 = 𝑞′ ←∗ 𝑡3, so ≈𝐺 is also transitive.

Equality saturation is defined as the inductive fixed point of rule applications and rebuilding:

EqSat(𝑅, 𝑤) = (CC ∘ 𝑇𝑝)∞(mkEGraph(𝑤)).

We omit the definition of CC and 𝑇𝑝 here, which can be found in the egg and egglog paper. But we remind the
readers several properties of equality saturation here: First, 𝑇𝑝(𝐺) is not necessarily deterministic, even when 𝐺 is
an E-graph (i.e., deterministic and reachable tree automaton). The congruence closure operator CC recovers the
determinicity. Second,

{𝑣 ∣ 𝑢 ∈ ℒ(𝐺), 𝑢 = 𝑣 ∨ 𝑢 →𝑅 𝑣} ⊆ ℒ(𝑇𝑝(𝐺)) ⊆ ℒ((CC ∘ 𝑇𝑝)(𝐺));

that is, the e-graph after rule application at least represents terms derived from the initial e-graph by rewriting zero
or one time, and the congruence closure further grows the E-graph. In many cases, the set containment is strict,
see my earlier blog post on tree automata completion. As a corollary,

{𝑡 ∣ 𝑤 →∗
𝑅 𝑡} ⊆ EqSat(𝑤).

Finally, in terms of the equivalence relation derived from E-graphs, we have

(≈𝐺) ⊆ (≈𝑇𝑝(𝐺)) ⊆ (≈(CC∘𝑇𝑝)(𝐺)) .

Given a term rewriting system 𝑅 where every rule preserves the set of variables (i.e., vars(lhs) = vars(rhs)), let 𝑅−1

be the term rewriting system obtained by swapping left-hand sides and right-hand sides of patterns in 𝑅. We have
[𝑤]𝑅 = ℒ(EqSat(𝑅 ∪ 𝑅−1, 𝑤))

Turing machines
A Turing machine ℳ = (𝑄, Σ, Π, Δ, 𝑞0, 𝛽) consists of a set of states 𝑄, the input and the tape alphabet Σ and Π
(with Σ ⊆ Π), a set of transitions Δ, an initial state 𝑞0 ∈ 𝑄, and a special blank symbol 𝛽 ∈ Π. Each transition
in Δ is a quintuple in 𝑄 × Π × Π × {𝐿, 𝑅} × 𝑄. For example, transition 𝑞𝑖𝑎𝑏𝑅𝑞𝑗 means if the current state is 𝑞𝑖
and the symbol being scanned is 𝑎, then replace 𝑎 with 𝑏, move the head to the right, and transit to state 𝑞𝑗. We
assume the Turing machine is two-way infinite, so that the head can move in both directions indefinitely. Each
configuration of ℳ can be represented as ▷𝑢𝑞𝑖𝑎𝑣◁, where ▷,◁ are left and right end markers, 𝑢 is the string to
the left of the read/write head, 𝑞𝑖 is the current state, 𝑎 is the symbol being scanned, and 𝑣 is the string to the
right. We say 𝑤1 ⊢ℳ 𝑤2 if configuration 𝑤1 can transit to configuration 𝑤2 in a Turing machine ℳ, and we omit
ℳ when it’s clear from the context.

Termination of Equality Saturation
Theorem 1. The following problem is R.E.-complete:

Instance: a term rewriting system 𝑅, a term 𝑡.
Question: does EqSat terminate with 𝑅 and 𝑡?

Proof. First, this problem is in R.E. since we can simply run EqSat with 𝑅 and 𝑡 to test whether it terminates. To
show this problem is R.E.-hard, we reduce the termination problem of Turing machines to the termination of EqSat.
We use the technique by [3]. In particular, for each Turing machine ℳ, we produce a string rewriting system 𝑅
such that the equivalence closure of 𝑅, (≈𝑅) = (𝑅 ∪ 𝑅−1)∗, satisfies that each equivalence class of ≈𝑅 corresponds
to a trace of the Turing machine. As a result, the following statements are equivalent:

• the Turing machine halts;
1Note that this definition of ≈𝐺 is different from the congruence relation defined in the Myhill-Nerode theorem for trees [2]. For

example, consider an E-graph with transitions {𝑎() → 𝑐1, 𝑏() → 𝑐2, 𝑓(𝑐1) → 𝑐𝑓 , 𝑓(𝑐2) → 𝑐𝑓}. In the Myhill-Nerode theorem, 𝑓𝑎 and 𝑓𝑏
would be equivalent while in our definition they are not because they are accepted by different states.

3

https://effect.systems/blog/ta-completion.html


• the trace of the Turing machine is finite;
• the equivalence class of the initial configuration in 𝑅 is finite;
• EqSat terminates.

In this proof, we consider a degenerate form of EqSat that works with string rewriting systems instead of term
rewriting systems. Every string corresponds to a term, and every string rewrite rule corresponds to a rewrite
rule. For example, the string 𝑢𝑣𝑤 corresponds to a term 𝑢(𝑣(𝑤(𝜖))), where 𝑢(⋅), 𝑣(⋅), 𝑤(⋅) are unary functions
and 𝜖 is a special constant. A string rewrite rule 𝑢𝑣𝑤 → 𝑣𝑢𝑤 corresponds to a (linear) term rewriting rule
𝑢(𝑣(𝑤(𝑥))) → 𝑣(𝑢(𝑤(𝑥))) where 𝑥 is a variable.

It is useful to define several sets of symbols for our construction. For each Turing machine ℳ, we define 𝑄 =
{𝑞 ∣ 𝑞 ∈ 𝑄}. We also define Σ, Π in a similar way. In our encoding, we use 𝑄 to denote states where the symbol
being scanned is to the left of the state, and we use Σ and Π to denote alphabets that are to the left of the states.
Moreover, we introduce two sets of “dummy” symbols 𝐿𝑧 and 𝑅𝑧 for 𝑧 ranges over 𝑄×({◁}∪Π) and ({▷}∪Π)×𝑄.
Let 𝐷𝐿 and 𝐷𝑅 be the set of all 𝐿𝑧 and 𝑅𝑧 respectively. We use these dummy symbols to make the string rewriting
system that we will later define Church-Rosser.

The rewriting system we are going to define works over the set of strings CONFIG = ▷(Π∪𝐷𝐿)∗(𝑄∪𝑄)(Π∪𝐷𝑅)∗◁.
Strings in CONFIG is in a many-to-one mapping to configurations of a Turing machine. We denote this mapping
as 𝜋: 𝜋(𝑤) converts each 𝑎𝑞𝑖 to 𝑞𝑖𝑎, removes dummy symbols 𝐿𝑧 and 𝑅𝑧, and replace 𝑎 with 𝑎. For example
𝜋(▷𝐿𝑞0,𝑎𝑏𝐿𝑞1,𝑏𝑐𝑞3𝑑𝑅𝑞𝑖,◁◁) = ▷𝑏𝑞3𝑐𝑑◁
Now, for each transitions in ℳ, we define our string rewriting system 𝑅 as follows.

transitions in ℳ rewrites in 𝑅
𝑞𝑖𝑎𝑏𝑅𝑞𝑗 𝑞𝑖𝑎 →𝑅 𝐿𝑞𝑖𝑎𝑏𝑞𝑗

𝑎𝑞𝑖 →𝑅 𝐿𝑎𝑞𝑖
𝑏𝑞𝑗

𝑞𝑖𝛽𝑏𝑅𝑞𝑗 𝑞𝑖◁ →𝑅 𝐿𝑞𝑖◁𝑏𝑞𝑗◁
▷𝑞𝑖 →𝑅 ▷𝐿▷𝑞𝑖

𝑏𝑞𝑗
𝑞𝑖𝑎𝑏𝐿𝑞𝑗 𝑞𝑖𝑎 →𝑅 𝑞𝑗𝑏𝑅𝑞𝑖𝑎

𝑎𝑞𝑖 →𝑅 𝑞𝑗𝑏𝑅𝑎𝑞𝑖
𝑞𝑖𝛽𝑏𝐿𝑞𝑗 𝑞𝑖◁ →𝑅 𝑞𝑗𝑏𝑅𝑞𝑖◁◁

▷𝑞𝑖 →𝑅 ▷𝑞𝑗𝑏𝑅▷𝑞𝑖

Moreover, for each 𝑧, we have the following two additional (sets of) auxiliary rewrite rules

𝑞𝑖𝑅𝑧 →𝑅 𝐿𝑧𝐿𝑧𝑞𝑖
𝐿𝑧𝑞𝑖 →𝑅 𝑞𝑖𝑅𝑧𝑅𝑧

for any 𝑧.

To explain what the two rules do, let us define two types of strings. Type-A strings are strings where the symbol
being scanned is to the immediate right of 𝑞𝑖 or to the immediate left of 𝑞𝑖. In other words, we call a string 𝑠
a type-A string if 𝑠 contains 𝑞𝑖𝑎 or 𝑎𝑞𝑖. Type-B strings are strings that are not type-A: they are strings where
there are dummy symbols in between the state and the symbol being scanned. The rewrite rules above convert any
type-B strings into type-A in a finite number of steps.

Now, we observe that 𝑅 has several properties:

1. Reverse convergence: the critical pair lemma implies that if a rewriting system is terminating and all its
critical pairs are convergent, it is convergent. Define 𝑅−1 to be a TRS derived from 𝑅 by swapping left and
right hand side. 𝑅−1 is terminating since rewrite rules in 𝑅−1 decreases the sizes of terms (that is, rewrite
rules in 𝑅−1 increases the sizes of terms), and 𝑅−1 has no critical pairs. Therefore, 𝑅−1 is convergent.

2. For each type-A string 𝑤, then either
• there exists no 𝑤′ with 𝑤 →𝑅 𝑤′ and 𝜋(𝑤) is a halting configuration;
• there exists a unique 𝑤′ such that 𝑤 →𝑅 𝑤′. Moreover, 𝜋(𝑤) ⊢ 𝜋(𝑤′).

3. For each type-B string 𝑤, there exists a unique 𝑤′ such that 𝑤 →𝑅 𝑤′. It holds that 𝜋(𝑤) = 𝜋(𝑤′). Moreover,
if 𝑤0 →𝑅 𝑤1 →𝑅 … is a sequence of type-B strings, the sequence must be bounded in length, since the state
symbols 𝑞𝑖 and 𝑞𝑖 move towards one end according to the auxillary rules above.

4



4. By 2 and 3, 𝑤 →𝑅 𝑤1 and 𝑤 →𝑅 𝑤2 implies 𝑤1 = 𝑤2. In other words, →𝑅 is a function.

These observations allows us to prove the following lemma

Lemma 2. Let 𝑤0 = ▷𝑞0𝑠◁ be an initial configuration. 𝑤0 is obviously in CONFIG. Moreover, given a Turing
machine ℳ, construct a string rewriting system 𝑅 as above. ℳ halts on 𝑤0 if and only if [𝑤0]𝑅, the equivalence
class of 𝑤0 in 𝑅, is finite.

Proof. Consider 𝑆 ∶ 𝑤0 →𝑅 𝑤1 →𝑅 …, a sequence of CONFIG starting with 𝑤0. By the above observations, 𝑆
must have a subsequence of type-A strings 𝑤0 →∗

𝑅 𝑤𝑎1
→∗

𝑅 𝑤𝑎2
→∗

𝑅 … with

𝜋(𝑤0) = … = 𝜋(𝑤𝑎1−1) ⊢ 𝜋(𝑤𝑎1
) = … = 𝜋(𝑤𝑎2−1) ⊢ 𝜋(𝑤𝑎2

) = … .

An overview of the trace 𝑤0, 𝑤𝑎1
, 𝑤𝑎2

, … and its properties is shown below:

Rw 𝑤0 →𝑅 𝑤1 →𝑅 … →𝑅 𝑤𝑎1−1⏟⏟⏟⏟⏟⏟⏟⏟⏟
finite

→𝑅 𝑤𝑎1
𝑤𝑎1+1 →𝑅 … →𝑅 𝑤𝑎2−1⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟⏟

finite

→𝑅 𝑤𝑎2
…

Type A B … B A B … B A
Config 𝜋(𝑤0) = 𝜋(𝑤1) = … = 𝜋(𝑤𝑎1−1) ⊢ℳ 𝜋(𝑤𝑎1

) 𝜋(𝑤𝑎1+1) = … = 𝜋(𝑤𝑎2−1) ⊢ℳ 𝜋(𝑤𝑎2
) …

Now we prove the claim:

• ⇐: Suppose [𝑤0]𝑅 is finite. We show that there exists a finite sequence 𝑆 of 𝑤0 →𝑅 𝑤1 →𝑅 … →𝑅 𝑤𝑛
such that there is no 𝑤′ such that 𝑤𝑛 →𝑅 𝑤′. If this is not the case, then an infinite rewriting sequence
𝑤0 →𝑅 𝑤1 → … must exist. Because [𝑤0]𝑅 is finite, for the sequence to be infinite, there must exist distinct
𝑖, 𝑗 such that 𝑤𝑖 = 𝑤𝑗 in the sequence. However, this is impossible, because →𝑅 always increases the sizes of
terms.

By our observation above, if there is no such 𝑤′ that 𝑤𝑛 →𝑅 𝑤′ in sequence 𝑆, it has to be the case that 𝑤𝑛
is type-A and 𝜋(𝑤) is a halting configuration.

Now, take the subsequence of 𝑆 that contains every type-A string:

𝑤0 →∗
𝑅 𝑤𝑎1

→∗
𝑅 … →∗

𝑅 𝑤𝑎𝑘
= 𝑤𝑛.

We have 𝜋(𝑤𝑎𝑖
) ⊢ 𝜋(𝑤𝑎𝑖+1

) for all 𝑖 and 𝜋(𝑤𝑎𝑘
) is a halting configuration. This implies a finite trace of the

Turing machine:
𝑤0 ⊢ 𝜋(𝑤𝑎1

) ⊢ … ⊢ 𝜋(𝑤𝑎𝑛
).

Since we only consider deterministic Turing machines, the Turing machine halts on 𝑤0.

• ⇒: Suppose otherwise ℳ halts on 𝑤0 and [𝑤0]𝑅 is infinite.

By definition, 𝑤0 is a normal form with respect to ←𝑅, and because ←𝑅 is convergent, if there exists a 𝑤 such
that 𝑤 ≈𝑅 𝑤0, then 𝑤0 →∗

𝑅 𝑤. The fact that [𝑤0]𝑅 is infinite implies 𝑤0 can be rewritten to infinitely many
strings 𝑤. Because →𝑅 satisfies the functional dependency, it has to be the case that there exists an infinite
rewriting sequence: 𝑆 ∶ 𝑤0 →𝑅 𝑤1 →𝑅 …. Taking the subsequence of 𝑆 consisting of every type-A strings:

𝑤0 →∗
𝑅 𝑤𝑎1

→∗
𝑅 … .

This implies an infinite trace of the Turing machine:

𝑤0 ⊢ 𝜋(𝑤𝑎1
) ⊢ … ,

which is a contradiction.

We are ready to prove the undecidability of the termination problem of EqSat:

Given a Turing machine ℳ. We construct the following two-tape Turing machine ℳ′:

ℳ′ alternates between the following two steps:

1. Simulate one transition of ℳ on its first tape.

5



2. Read the string on its second tape as a number, compute the next prime number, and write it to
the second tape.

ℳ′ halts when the simulation of ℳ reaches an accepting state.

It is known that a two-tape Turing machine can be simulated using a standard Turing machine, so we assume ℳ′

is a standard Turing machine and takes input string (𝑠1, 𝑠2), where 𝑠1 is the input on its first tape and 𝑠2 is the
input on its second tape. Let 𝑅′ be the string rewriting system derived from ℳ′ using the encoding we introduced
in the lemma.

Given a string 𝑠, let 𝑤 be the initial configuration ▷𝑞0(𝑠, 2)◁. The following conditions are equivalent:

1. ℳ halts on input 𝑠.
2. ℳ′ halts on input (𝑠, 2).
3. [𝑤]𝑅′ is finite.
4. [𝑤]𝑅′ is regular.

Note that (3) implies (4) trivially, and (4) implies (3) because if [𝑤]𝑅′ is infinite, it must not be regular since the
trace of ℳ′ computes every prime number.

Now run EqSat with initial string 𝑤 and rewriting system ↔𝑅′ . EqSat terminates if and only if ℳ halts on 𝑠:

• ⇒: Suppose EqSat terminates with output E-graph 𝐺. Strings equivalent to 𝑤 in 𝐺 is exactly the equivalence
class of 𝑤, i.e., [𝑤]𝐺 = [𝑤]𝑅′ . Moreover, every e-class in an E-graph represents a regular language, so [𝑤]𝐺 is
regular. Therefore, [𝑤]𝐺 is finite.

• ⇐: Suppose ℳ halts on 𝑠. This implies [𝑤]𝑅′ is finite. Because EqSat monotonically enlarges the set of
represented terms, it has to stop in a finite number of iterations.

Because the halting problem of a Turing machine is undecidable, the termination problem of EqSat is undecidable
as well. ■

The regularity problem of term rewriting systems
In the last section, we have shown that the termination of equality saturation is undecidable. Here, we consider a
more general question: Given a term rewriting system and a term, is the equivalence class of the term defined by
the term rewriting system regular? In general, for term rewriting systems consisting of variable-preserving rewrite
rules, if equality saturation terminates on 𝑅 ∪ 𝑅−1, the equivalence class is regular. However, there are cases where
the equivalence class of a term is regular, equality saturation does not terminate: an example is term rewriting
system {𝑓(𝑥) → 𝑓(𝑔(𝑥))} and term 𝑓(𝑎).
This regularity problem is undecidable, as we show here.

Theorem 3. The following problem is undecidable.

Instance: a term rewriting system 𝑅, a term 𝑤.

Problem: Is [𝑤]𝑅 regular?

Proof.

To show the undecidability, we reduce the halting problem of Turing machines to this problem. As shown in
Theorem 1, given a Turing machine ℳ, ℳ halts on an input 𝑠 if and only if [𝑤]𝑅′ (as constructed in Theorem 1)
is regular for 𝑤 = ▷𝑞0(𝑠, 2)◁. ■
Different from the termination of equality saturation, it is open whether this problem is recursive enumerable.
However, for a particular kind of rewrite systems, we show this regularity problem is R.E.-complete.

Theorem 4. The following problem is R.E.-complete.

Instance: a left-linear and convergent term rewriting system 𝑅, a term 𝑤.

Problem: Is [𝑤]𝑅 regular?

Proof.

6



As we show in Theorem 1, the regularity of 𝑅 (and therefore 𝑅−1) is undecidable. Because every string rewriting
system is a linear term rewriting system 𝑅−1 is left-linear. Moreover, 𝑅−1 is convergent. Therefore, the regularity
of left-linear, convergent term rewriting systems is undecidable. Additionally, we show the regularity problem is in
R.E. by showing a semi-decision procedure for it.

Procedure equivClassOf(𝑅, 𝑤)

Input: a left-linear, convergent term rewriting system 𝑅, a term 𝑤.

Output: an E-graph that represents [𝑤]𝑅 if exists.

begin

1. for each E-graph 𝐺 such that 𝑤 ∈ ℒ(𝐺) do

2. if isFixPoint(𝐺, 𝑅 ∪ 𝑅−1) then

3. if ℒ(𝐺) ∩ normalForms(𝑅) = {𝑤} then

4. return 𝐺;

end

In the above algorithm, isFixPoint checks if the E-graph 𝐺 is “saturated” with respect to 𝑅 and 𝑅−1. It does
this by checking that, for each matched left-hand side 𝑙𝜎 of the pattern, the right-hand side 𝑟𝜎 exists in the
E-graph and is equivalent to 𝑙𝜎. Some care needs to be taken here: consider a rewrite rule 𝑓(𝑥, 𝑦) → 𝑔(𝑥).
The reverse form of this rule is 𝑔(𝑥) → 𝑓(𝑥, 𝑦). The right-hand side pattern of this rewrite rule has a larger
variable set than the left-hand side. To handle this rewrite rule, isFixPoint matches the left-hand side pattern 𝑔(𝑥),
and each match produces a substitution {𝑥 ↦ 𝑐𝑥} at root E-class 𝑐. isFixPoint checks regular set containment
{𝑓(𝑡𝑥, 𝑡𝑦) ∣ 𝑡𝑥 ∈ ℒ(𝑐𝑥), 𝑡𝑏 ∈ ∗} ⊆ ℒ(𝑐), where ∗ is the universe of all terms.

We show the correctness of our algorithm in two steps.

• We show that if an e-graph 𝐺 is returned, ℒ(𝐺) = [𝑤]𝑅:
– First, we show [𝑤]𝑅 ⊆ ℒ(𝐺): if isFixPoint(𝐺, 𝑅 ∪ 𝑅−1) holds, we have, for any term 𝑡, if 𝑡 is accepted

by 𝐺, the entire equivalence class of 𝑡 is also accepted by 𝐺; that is

𝑡 ∈ ℒ(𝐺) ⇒ [𝑡]𝑅 ⊆ ℒ(𝐺). (1)

Since 𝑤 ∈ ℒ(𝐺), [𝑤]𝑅 ⊆ ℒ(𝐺). To prove (1), suppose this is not the case. There must exist term 𝑢, 𝑣
where 𝑢 ↔𝑅 𝑣, 𝑢 ∈ ℒ(𝐺), and 𝑣 ∉ ℒ(𝐺), which contradicts isFixPoint(𝐺, 𝑅 ∪ 𝑅−1).

– Second, we show ℒ(𝐺) ⊆ [𝑤]𝑅. Suppose this is not the case. There exists a term 𝑢 ∈ ℒ(𝐺) that is in a
different equivalence class than [𝑤]𝑅. By (1), [𝑢]𝑅 ⊆ ℒ(𝐺). Because 𝑅 is convergent, [𝑢]𝑅 has a normal
form 𝑛𝑢 that is contained in ℒ(𝐺), but line 3 ensures that ℒ(𝐺) has one normal form which is 𝑤, a
contradiction.

• On the other hand, if there exists an e-graph 𝐺 such that ℒ(𝐺) = [𝑤]𝑅, it will be returned. This case is
straightforward: if ℒ(𝐺) = [𝑤]𝑅, 𝐺 is “saturated” with regard to ↔𝑅, so the check at line 3 passes. Moreover,
since 𝑅 is convergent, [𝑤]𝑅 has only one normal form which is 𝑤, so the check at line 4 also passes. Therefore,
𝐺 will be returned. ■

Relaxing left-linearity
In the last theorem, the set of normal forms is intersected with the language represented by the e-graph, and checked
for equivalence with the singleton set {𝑤}. This is why we require the term rewriting system to be left-linear: the set
of normal forms of a left-linear term rewriting system is regular, and regular languages are closed under intersection
and has decidable equivalence checking. Therefore, if there is a representation of normal forms for general term
rewriting systems that is closed under intersection and has decidable equivalence checking, then we can lift the left
linearity condition in the last theorem.

Indeed, such a representation exists. It is called tree automata with global constraints (TAGCs) [1]. Essentially,
TAGCs extend tree automata with global equality and inequality constraints. TAGCs are closed under union
and intersection, but not under complementation. Moreover, the emptiness and membership problem of TAGC
is decidable. Therefore, if we can represent the set of normal forms of a term rewriting system as a TAGC, then

7



line 3 of the algorithm used in the last theorem can be checked decidably for a general term rewriting system by
considering its equivalent form:

𝑤 ∈ 𝐿 ∧ 𝐿 ∩ {𝑤} = ∅
where 𝐿 = ℒ(𝐺) ∩ normalForms(𝑅). I claim normalForms(𝑅) can be represented as an TAGC for an arbitrary
term rewriting system, although I will omit the details of the construction here since it is a bit technical2. Putting
everything together, we have the following generalization of Theorem 4:

Theorem 5. The following problem is R.E.-complete.

Instance: a convergent term rewriting system 𝑅, a term 𝑤.

Problem: Is [𝑤]𝑅 regular?

References
[1] Barguñó, L., Creus, C., Godoy, G., Jacquemard, F. and Vacher, C. 2010. The emptiness problem for tree

automata with global constraints. 2010 25th annual IEEE symposium on logic in computer science (2010),
263–272.

[2] Kozen, D. 1992. On the myhill-nerode theorem for trees. Bulletin of the EATCS. 47, (1992), 170–173.

[3] Narendran, P., Ó’Dúnlaing, C. and Rolletschek, H. 1985. Complexity of certain decision problems
about congruential languages. Journal of Computer and System Sciences. 30, 3 (1985), 343–358.
DOI:https://doi.org/https://doi.org/10.1016/0022-0000(85)90051-0.

2In particular, we cannot use our strategy for left-linear term rewriting systems by first representing the set of rewritable terms and
taking its complement, since TAGC is not closed under complementation. Luckily, for each rewrite rule, we can explicitly represent
terms that does not match the left-hand side with inequality constraints, and then take the intersection of them.

8

https://doi.org/10.1109/LICS.2010.28
https://doi.org/10.1109/LICS.2010.28
https://doi.org/10.1016/0022-0000(85)90051-0

	Background
	Term rewriting
	Finite tree automata
	E-graphs and equality saturation
	Turing machines

	Termination of Equality Saturation
	The regularity problem of term rewriting systems
	Relaxing left-linearity

	References

