
Ensuring the Termination of EqSat over a
Terminating Term Rewriting System

Yihong Zhang

Mar 17, 2023

Term rewriting is one of the most fundamental techniques in programming lan-
guages. It is used to define program semantics, to optimize programs, and to
check program equivalences. An issue with using term rewriting to optimize
program is that, in a non-confluent term rewriting system, it is usually not
clear which rule should be applied first, among all the possible rules. Equality
saturation (EqSat) is a variant of term rewriting that mitigates this so-called
Phase-Ordering Problem. In EqSat, all the rules are applied at the same time,
and the resulting program space is stored compactly in a data structure called
E-graph1.

EqSat has been shown to be very successful for program optimizations and
program equivalence checking, even when the given set of rewrite rules are not
terminating or even when the theory is not decidable in general. However,
despite its success in practice, there are no formal guarantees about EqSat: for
example, when does EqSat terminate, and if it does not, how does one make it
terminate. The first problem is known in the term rewriting literature as the
termination problem, and the second is known as the completion problem. Both
problems are very hard, and there are a ton of literatures on both problems. In
the setting of EqSat, these problems are not only theoretically interesting, but
also have practical implications. For example, in program optimization, we may
want to get the most “optimized” term with regard to a given set of rules, so
making sure EqSat terminate is important to such optimality guarantees. Or,
some theories are decidable but deciding them is slow, so one may want to speed
up the reasoning by using EqSat, but there is no point in “speeding up” the
decision procedure if it simply does not terminate. In this post, we will focus
on the termination problem of EqSat. We don’t attempt to solve this problem
entirely, but rather have this blog post as a first step and to draw community’s
attention to this problem. In fact, we found many interesting results about this
termination problem.

1The reader should treat E-graphs and tree automata as two interchangeable terms. An
E-graph is just a deterministic finite tree automaton with no 𝜖 transitions and no unreachable
states. Moreover, all tree automata in this post contain no unreachable states.

1



This post will show (1) how the innocent-looking associativity rule can cause
non-termination, (2) why a terminating, and even canonical, term rewriting sys-
tem does not necessarily terminate in EqSat, (3) how to fix the above problem
by “weakening” EqSat’s merge operation, and (4) two potentially promising
approaches to ensure the termination of EqSat. One fascinating thing I found
during this journey is that, researchers working on tree automata indeed de-
veloped a technique almost identical to EqSat, known as Tree Automata (TA)
completion. Different from EqSat, TA completion does not have the problem
in (2) and is exactly the algorithm we will show in (3). Moreover, there is a
beautiful connection between EqSat and TA completion: TA completion is the
“preorder” version of EqSat.

Term rewriting 101: Ground theories are decidable via con-
gruence closure
Before understanding why associativity can cause non-termination, let us first
briefly review some relevant backgrounds on ground theories and congruence
closure.

A ground equational theory is an equational theory induced by a finite set of
ground identities of the form 𝑠 ≈ 𝑡, where both 𝑠 and 𝑡 are ground terms (i.e., no
variables). For example, below is an example of a ground theory over signature
Σ = 𝑎, 𝑏, 𝑐, 𝑓, 𝑔:

𝑎 ≈ 𝑓(𝑏)
𝑏 ≈ 𝑔(𝑐)

𝑓(𝑔(𝑐)) ≈ 𝑓(𝑎)

All the equations that can be deduced from these three identities hold in this
equational theory. For example, we have 𝑎 ≈ 𝑓(𝑎) because 𝑎 ≈ 𝑓(𝑏) ≈ 𝑓(𝑔(𝑐)) ≈
𝑓(𝑎). Here, 𝑓(𝑏) ≈ 𝑓(𝑔(𝑐)) is implied by 𝑏 ≈ 𝑔(𝑐). In equational theory, a
function by definition maps equivalent inputs to equivalent outputs.

A classic result in term rewriting is that the word problem of ground equational
theory is decidable. A word problem asks whether two ground terms 𝑠 and
𝑡 are equivalent in a given theory. In general, this problem is undecidable.
However, if the theory is ground, several algorithms exist that decide its word
problem. One of the most well-known algorithm is the 𝑂(𝑛 log 𝑛) congruence
closure algorithm of Downey, Sethi, and Tarjan. One way to view it is that the
congruence closure algorithm produces a canonical term rewriting system for
each input set of ground identities: For theory 𝐸, it builds an E-graph of the
theory. Every E-graph corresponds to a canonical term rewriting system, which
gives a way to decide 𝐸. For example, the congruence closure algorithm will

2



produce the following E-graph for the theory above:

𝑐𝑎 = {𝑎, 𝑓(𝑐𝑎), 𝑓(𝑐𝑏)}
𝑐𝑏 = {𝑏, 𝑔(𝑐𝑐)}
𝑐𝑐 = {𝑐}

where 𝑐𝑎, 𝑐𝑏, 𝑐𝑐 denote E-classes of the E-graph, and 𝑎, 𝑏, 𝑐, 𝑓(𝑐𝑎), 𝑓(𝑐𝑏), 𝑔(𝑐𝑐)
denote E-nodes. This E-graph naturally gives the following canonical term
rewriting system 𝐺, which rewrite equivalent terms to the same e-class:

𝑎 →𝐺 𝑐𝑎
𝑓(𝑐𝑎) →𝐺 𝑐𝑎
𝑓(𝑐𝑏) →𝐺 𝑐𝑎

𝑏 →𝐺 𝑐𝑏
𝑔(𝑐𝑐) →𝐺 𝑐𝑏

𝑐 →𝐺 𝑐𝑐

Now, checking 𝑠 ≈ 𝑡 can be simply done by checking if there exists some normal
form 𝑢 such that 𝑠 →∗

𝐺 𝑢 ←∗
𝐺 𝑡 holds. For example, 𝑔(𝑓(𝑎)) ≈ 𝑔(𝑓(𝑔(𝑐)))

because

𝑔(𝑓(𝑎)) →𝐺 𝑔(𝑓(𝑐𝑎))
→𝐺 𝑔(𝑐𝑎)
←𝐺 𝑔(𝑓(𝑐𝑏))
←𝐺 𝑔(𝑓(𝑔(𝑐𝑐))
←𝐺 𝑔(𝑓(𝑔(𝑐))))

This is sound and always terminates, because the term rewriting system pro-
duced by an E-graph is canonical—meaning every term will have exactly one
normal form and term rewriting always terminates.

Ground associative theory does not terminate in EqSat
Associativity is a fundamental axiom to many algebraic structures like semi-
groups, monoids, and groups. It has the following form:

𝑥 ⋅ (𝑦 ⋅ 𝑧) ≈ (𝑥 ⋅ 𝑦) ⋅ 𝑧.

This rule can be oriented as 𝑥 ⋅ (𝑦 ⋅ 𝑧) → (𝑥 ⋅ 𝑦) ⋅ 𝑧 (or 𝑥 ⋅ (𝑦 ⋅ 𝑧) → (𝑥 ⋅ 𝑦) ⋅ 𝑧). It
must be terminating, you may think, so we can just apply the associativity until
saturation in EqSat, which will decide theories with associativity! Unfortunately,
ground associative theories are not decidable in general. Term Rewriting and

3



All That gives an example of undecidable associative theory (we write 𝑥𝑦 for
𝑥 ⋅ 𝑦 and 𝑥 ⋯ 𝑥 for 𝑥𝑛 for brevity and associativity allows us to drop brackets):

(𝑥𝑦)𝑧 ≈ 𝑥(𝑦𝑧)
𝑎𝑏𝑎2𝑏2 ≈ 𝑏2𝑎2𝑏𝑎

𝑎2𝑏𝑎𝑏2𝑎 ≈ 𝑏2𝑎3𝑏𝑎
𝑎𝑏𝑎3𝑏2 ≈ 𝑎𝑏2𝑎𝑏𝑎2

𝑏3𝑎2𝑏2𝑎2𝑏𝑎 ≈ 𝑏3𝑎2𝑏2𝑎4

𝑎4𝑏2𝑎2𝑏𝑎 ≈ 𝑏2𝑎4

There is another way to state this proposition that appeals to math-minded
folks: the word problem for finitely presented semigroups are not decidable.

Because of this, associative rules do not terminate in EqSat in general. Oth-
erwise, given a set of ground identities 𝐸, we can run the congruence closure
algorithm over 𝐸 to get an E-graph, and run EqSat with associativity rules.
When it reaches the fixed point and terminates, this gives us a way to decide
ground associative theories, which is a contradiction to the fact that such theo-
ries are not decidable.

To better understand why associativity does not terminate in EqSat, here is an
example: suppose ⋅ is associative and satisfy the ground identity 0 ⋅ 𝑎 ≈ 0 for
constants 0, 𝑎. Now suppose we orient this identity into rewrite rule 0 ⋅ 𝑎 → 0
while having the associative rule (𝑥 ⋅ 𝑦) ⋅ 𝑧 → 𝑥 ⋅ (𝑦 ⋅ 𝑧). This is a terminating
term-rewriting system (although not confluent, because the term (0 ⋅ 𝑎) ⋅ 𝑎 has
two normal forms 0 and 0 ⋅ (𝑎 ⋅ 𝑎)).
However, this ruleset causes problems in EqSat: Starting with the initial term
0 ⋅ 𝑎, EqSat will apply the rewrite rule 0 ⋅ 𝑎 → 0 and merge 0 ⋅ 𝑎 and 0 into the
same E-class. The E-graph will look like this:

Figure 1: 0 ⋅ 𝑎 = 𝑎

4



Notice that because of the existence of cycles in this E-graph, it represents not
only the two terms 0 and 0 ⋅ 𝑎 but indeed an infinite set of terms. For example,
(0 ⋅ 𝑎) ⋅ 𝑎 is explicitly represented by E-class 𝑞0 because

(0 ⋅ 𝑎) ⋅ 𝑎 →∗ (𝑞0 ⋅ 𝑞𝑎) ⋅ 𝑞𝑎 → 𝑞0 ⋅ 𝑞𝑎 → 𝑞0.

In fact, 𝑞0 represents the infinite set of terms

0 ⋅ 𝑎 ≈ (0 ⋅ 𝑎) ⋅ 𝑎 ≈ ((0 ⋅ 𝑎) ⋅ 𝑎) ⋅ 𝑎 ≈ ⋯ .

For any such term (0 ⋅ 𝑎) ⋅ ⋯, it can be rewritten to a term of the form 0 ⋅ (𝑎 ⋅
⋯). Now, for associativity to terminate, the output E-graph need to at least
represent the set of terms 𝑎, 𝑎 ⋅𝑎, (𝑎 ⋅𝑎) ⋅𝑎, ⋯, where any two terms are not equal.
This requires infinitely many E-classes, each represents some 𝑎𝑛, while a finite
E-graph will have only a finite number of E-classes. Therefore, EqSat will not
terminate in this case.

Canonical TRSs do not necessarily terminate in EqSat as
well
In our last example, the term rewriting system 𝑅 = {0⋅𝑎 → 0, (𝑥⋅𝑦)⋅𝑧 → 𝑥⋅(𝑦⋅𝑧)}
is terminating, but 𝑅 is not confluent. Confluence means that every term will
have at most one normal form, and associativity is usually not confluent. At first
I thought maybe non-confluence is what causes EqSat to not terminate. But
this is not the case; there are canonical (i.e., terminating + confluent) TRSs
that are non-terminating in EqSat. Here we give such an example: Let the TRS
𝑅 be

ℎ(𝑓(𝑥), 𝑦) → ℎ(𝑥, 𝑔(𝑦))
ℎ(𝑥, 𝑔(𝑦)) → ℎ(𝑥, 𝑦)

𝑓(𝑥) → 𝑥

This is a terminating term rewriting system, where every term of the form
ℎ(𝑓𝑛(𝑎), 𝑔𝑚(𝑏)) will have the normal form ℎ(𝑎, 𝑏), no matter the order of rule
application. However, this is not terminating in EqSat: consider the initial term
ℎ(𝑓(𝑎), 𝑏). Running the rule 𝑓(𝑥) → 𝑥 over the initial E-graph will union 𝑓(𝑎)
and 𝑎 together, creating an infinite (but regular) set of terms ℎ(𝑓∗(𝑎), 𝑏). See
figure.

Now, by rule ℎ(𝑓(𝑥), 𝑦) → ℎ(𝑥, 𝑔(𝑦)), each ℎ(𝑓𝑛(𝑎), 𝑏) will be rewritten into
ℎ(𝑎, 𝑔𝑛(𝑏)), so the output E-graph must contain 𝑔𝑛(𝑏) for 𝑛 ∈ ℕ. But notice
that the rule set will not rewrite any 𝑔𝑛(𝑏) to 𝑔𝑚(𝑏) for 𝑛 ≠ 𝑚, which means
that we have an infinite set of inequivalent terms 𝑏 ≉ 𝑔(𝑏) ≉ 𝑔2(𝑏) ≉ …. Again,
the existence of infinitely many e-classes, one for each 𝑔𝑛(𝑏), implies that EqSat
will not terminate.

5



Figure 2: An E-graph that represents ℎ(𝑓∗(𝑎), 𝑏)

Tree Automata Completion to the Rescue
For a terminating TRS, the set of reachable terms is always finite2. Intuitively,
one will think that EqSat is just a more powerful way of doing term rewriting.
So it is natural to think that running EqSat with a terminating TRS (with
some initial term 𝑡) will eventually terminate. But this is not true, as has been
shown in the last two sections. The issue is because EqSat is not exactly term
rewriting: the equivalence in EqSat is bidirectional. For example, in our last
example, the rewrite from 𝑓(𝑎) to 𝑎 does not only make the E-graph represent
these two terms, but also 𝑓(𝑓(𝑎)) and 𝑓(𝑓(𝑓(𝑎))) and so on.

Before going further, let us first formally define the problem. For a TRS 𝑅, we
define the set of reachable terms 𝑅∗(𝑠) = {𝑡 ∣ 𝑠 →∗

𝑅 𝑡}. If 𝑅 is terminating,
𝑅∗(𝑠) is finite for any term 𝑠. It can also be shown that EqSat always computes
a superset of 𝑅∗(𝑠). A natural idea is that if our EqSat procedure computes
exactly 𝑅∗(𝑠), it should terminate for terminating 𝑅. And in fact it may also be
capable of handling some non-terminating TRSs: E-graphs can represent many
infinite sets of terms.

It turns out, term rewriting researchers have developed a technique that com-
putes exactly 𝑅∗(𝑠), represented as a tree automaton. The technique is known
as tree automata completion, which is the main technique I hope to intro-
duce in this blog post. TA completion proceeds as follows: build an initial
tree automaton and run term rewriting over this tree automaton until satura-
tion. Specifically, it searches for left-hand sides of rewrite rules, build and insert

2This can be shown via König’s lemma for trees. Notice that TRSs are always finitely
branching and rewriting in terminating TRSs will not contain cycles.

6

https://en.wikipedia.org/wiki/K%C5%91nig%27s_lemma


right-hand sides, and merge the left-hand sides with right-hand sides. Does this
sound familiar? Yes, this is EqSat! It is striking that the program optimization
and term rewriting communities independently come up with essentially the
same technique.

But wait a second, didn’t we just say EqSat does not necessarily compute 𝑅∗(𝑠)
exactly? This is correct. There is a single tweak that distinguishes tree automata
completion from EqSat. In tree automata completion, merging is performed
directionally. For example, suppose the left-hand side is in E-class 𝑞𝑙 and right-
hand side in E-class 𝑞𝑟, EqSat will basically rename every occurrence of 𝑞𝑙 with
𝑞𝑟 (or vice versa). As a result the two E-classes are not distinguishable after the
merging. Tree automata completion, on the other hand, performs the merging
by adding a new (𝜖-)transition 𝑞𝑟 → 𝑞𝑙 (remember the TRS view of an E-graph).

To better see the difference, consider the E-graph that represents terms
{𝑓(𝑎), 𝑔(𝑏)}

𝑎 → 𝑞𝑎
𝑓(𝑞𝑎) → 𝑞𝑓

𝑏 → 𝑞𝑏
𝑔(𝑞𝑏) → 𝑞𝑔

and the rewrite rule 𝑅 = {𝑎 → 𝑏}. EqSat will rename 𝑞𝑏 with 𝑞𝑎 (or 𝑞𝑏 with 𝑞𝑎),
so every E-node that points to child 𝑎 (resp. 𝑏) now also points to 𝑏 (resp. 𝑎).
The E-graph after the merging will now contain {𝑓(𝑎), 𝑓(𝑏), 𝑔(𝑎), 𝑔(𝑏)}. Note
that among these terms, 𝑔(𝑎) is not reachable by 𝑅; the rewrite rule 𝑎 → 𝑏
can only rewrite 𝑓(𝑎) to 𝑓(𝑏), but not 𝑔(𝑏) to 𝑔(𝑎). In contrast, tree automata
completion will add the transition 𝑞𝑏 → 𝑞𝑎. Recall that we say a term 𝑡 is
represented by an E-class 𝑞 in an E-graph 𝐺 if 𝑡 →∗

𝐺 𝑞. With the new transition
𝑞𝑏 → 𝑞𝑎, we have every term represented by 𝑞𝑎 is now represented by 𝑞𝑏, but not
the other way around. As a consequence, 𝑓(𝑏) is represented by the E-graph,
since

𝑓(𝑏) → 𝑓(𝑞𝑏) → 𝑓(𝑞𝑎) → 𝑞𝑓 ,
while 𝑔(𝑎) is not represented.

This difference guarantees that TA completion will only contain terms that are
reachable by the TRS. Moreover, if TA completion terminates, it will compute
exactly 𝑅∗(𝑠). The actual TA completion is slightly more general than this:
instead of considering the set of reachable terms of a single initial term, it
considers the set of reachable terms of an initial tree automaton, which may
contain an infinite (but regular) set of terms. It turns out, although the set of
reachable terms 𝑅∗(𝑠) is always finite (and thus regular) for initial term if 𝑅 is
terminating, it is undecidable if the set of reachable terms is regular or not for
an initial tree automaton even when 𝑅 is terminating and confluent. To ensure
the termination of TA completion even when the reachable set is not regular,
researchers have proposed approximation algorithms for TA completion, which
are useful for applications like program verification.

7

https://www.sciencedirect.com/science/article/pii/S2352220815000504


Discussions on tree automata completion

Equivalence and preorder. One interesting way of viewing TA completion
is that it generalizes the equivalence relation in EqSat to a preorder: EqSat
maintains an equivalence relation ≈ between terms and asserts 𝑙𝜎 ≈ 𝑟𝜎 for
every left-hand side 𝑙𝜎 and right-hand side 𝑟𝜎. EqSat also guarantees that if
𝑡[𝑎] is in the E-graph and 𝑎 ≈ 𝑏, then 𝑡[𝑏] is also in the E-graph and 𝑡[𝑎] ≈ 𝑡[𝑏]3.
TA completion, instead, maintains a preorder relation ≲ and asserts 𝑙𝜎 ≲ 𝑟𝜎
for every left-hand side 𝑙𝜎 and right-hand side 𝑟𝜎. 𝑙𝜎 ≲ 𝑟𝜎 and 𝑙𝜎 ≳ 𝑟𝜎 in TA
completion is equivalent to 𝑙𝜎 ≈ 𝑟𝜎 in equality saturation, and in such cases 𝑙𝜎
and 𝑟𝜎 can be viewed as one state. Moreover, TA completion guarantees that if
𝑡[𝑎] is in the tree automaton and 𝑎 ≲ 𝑏, then 𝑡[𝑏] is also in the tree automaton
and 𝑡[𝑎] ≲ 𝑡[𝑏].
Implementation of tree automata completion. I have not implemented TA
completion, but it would be interesting to see how to implement TA completion
in an EqSat framework like egg. It seems we only need to make two modifica-
tions: First, during rewrite, instead of merging left-hand side and right-hand
side, add an edge from the left-hand side to the right-hand side (or equivalently,
an 𝜖-transition from the right-hand side to the left-hand side). As an optimiza-
tion, we can merge two states together if they are in the same strongly connected
component. Second, modify the matching procedure so that it will also “follow”
these 𝜖-transitions. The new matching procedure can no longer be expressed as
a conjunctive query, as opposed to EqSat, and is more expensive to compute.
In general, though, TA completion has a higher time complexity than equality
saturation, since dealing with DAGs / SCCs are more difficult than dealing with
equivalences.

The termination problem of tree automata completion. We have shown
above that given a terminating TRS 𝑅 and an initial term 𝑡, tree automata com-
pletion is always terminating but EqSat may not terminate, which shows that
the termination of tree automata completion does not imply the termination of
EqSat. But is the other direction true? Indeed, the termination of EqSat does
not imply the termination of tree automata completion as well! To see this,
consider

𝑓(𝑥) →𝑅 𝑔(𝑓(ℎ(𝑥)))
ℎ(𝑥) →𝑅 𝑏

For tree automata completion to terminate, the set of reachable terms must be
regular. However, for initial term 𝑓(𝑎), the set of reachable terms is

{𝑔𝑛(𝑓(ℎ𝑛(𝑎))) ∣ 𝑛 ∈ ℕ} ∪ {𝑔𝑛(𝑓(ℎ𝑚(𝑏))) ∣ 𝑛 > 𝑚},

which is not regular. In EqSat, because equivalence is bidirectional, all the ℎ(𝑥)
are in the same E-class as 𝑏, so the first rewrite rule can be effectively viewed

3Relations with these properties are known as partial strong congruences.

8



as 𝑓(𝑥) →𝑅 𝑔(𝑓(𝑏)), where the right-hand side is a ground term. As a result,
there are only a finite number of equivalence classes in the theory defined by
these rewrite rules, which implies the termination of equality saturation.

Practical approaches to termination
So far we have shown that TA completion is a variant of EqSat that is termi-
nating for terminating TRS. But besides this we still have not shown anything
positive about the termination of EqSat itself. In particular, although there
have been research on when term rewriting terminates and when TA comple-
tion terminates, neither of them implies the termination of EqSat (and vice
versa). My collaborators and I have been thinking about the termination prob-
lem for a while, and we have yet to come up with some non-trivial criteria4.
Despite this, in practice there are many tricks people can use to stop EqSat
early and still get relatively “complete” e-graphs. I will briefly mention two of
them below.

Depth-bounded equality saturation. Let us define the depth of an E-class
depth(𝑐) to be the smallest depth possible among terms represented by the E-
graph, namely min𝑡→∗𝑐depth(𝑡). This is well-defined as we require all E-classes to
represent some terms. Now, given a limit on depth 𝑁 , depth-bounded equality
saturation maintains depth(𝑐) for each E-class during equality saturation, and
only apply a rewrite rule when any of the created E-classes does not have a
depth greater than 𝑁 . Because there’s only finite number of E-graphs with
bounded depth5, depth-bounded EqSat always terminates for any given 𝑁 .

There is something nice about depth-bounded EqSat. If two terms can be proved
equivalent without using any term with depth > 𝑁 , depth-bounded EqSat can
eventually show their equivalence. This is also useful in program optimization,
where the optimal term is unlikely to be, say, 10× larger than the original
term. However, as I prototyped depth-bounded equality saturation a while ago,
I found depth-bounded EqSat still took a very long time to terminate even for
a reasonable 𝑁 . This somehow makes sense, since the number of trees with
bounded depths grows rapidly.

Merge-only equality saturation. This idea has been around for a while and
I think was first came up with by Remy. It is also very natural: We only
apply the subset of rewrite rules if both the left-hand side and the right-hand
side are already present in the E-graph. These rewrite rules essentially only

4There are some simple syntactic criteria that we can borrow from the ones for TA com-
pletion. For example, if all rules have right-hand sides with depth 1, equality saturation will
always terminate because applying rules won’t create new E-classes. Similarly, if the right-
hand sides are ground terms only, equality saturation will also terminate. The two criteria
can be further combined: if the variables of the right-hand side terms only occur at depth 1,
equality saturation will always terminate.

5Every distinct e-class contains (at least) one distinct term of depth 𝑁. There are only
finitely many depth-𝑁 terms, so finitely many E-classes. Finally, there are finitely many ways
to connect finitely many E-classes.

9

https://oeis.org/A003095
https://remy.wang


merge E-classes together without creating any new E-nodes and are obviously
terminating. They are useful when you have run EqSat for several iterations,
want to stop there, but still want some relatively complete result. Merge-only
EqSat provides the guarantee that if two terms can be proven equivalent using
only terms in an E-graph 𝐺, they can be proven equivalent by running merge-
only EqSat over 𝐺.

10


	Term rewriting 101: Ground theories are decidable via congruence closure
	Ground associative theory does not terminate in EqSat
	Canonical TRSs do not necessarily terminate in EqSat as well
	Tree Automata Completion to the Rescue
	Discussions on tree automata completion

	Practical approaches to termination

