
Notes on the scheduling and extraction problems
of EqSat

Yihong Zhang

This is a companion to my PLSE blog post on the termination problem of equality
saturation. It is intended to give an overview of two other interesting problems
related to equality saturation besides termination, namely extraction and schedul-
ing.

Extraction
E-graph extraction tries to extract an optimal program out of an E-graph. This
is both an easy and a hard problem: If we only consider the tree size/cost of
programs (e.g., (x + 1) * (x + 1) has size 7), this is an easy problem, as very
efficient algorithms for extraction exist. However, in practice we usually want
to consider the DAG size/cost of programs (e.g., (x + 1) * (x + 1) has size
4). In a blog post, I showed this problem is NP-hard via a reduction from the
minimal set cover problem. This problem is equivalent to the shortest path
problem over hypergraphs, if we consider an E-graph as a directed hypergraph,
where e-nodes are hyperedges.

Despite the NP-hardness, many people have been working on E-graph extraction.
Many algorithms are proposed. For example, Peggy, SPORES, and TenSat use
ILP solvers. babble and an early prototype of eggcc use a dynamic program-
ming algorithm. Strikingly, three talks at EGRAPHS 2023 are on this topic:
KestRel proposed a simulated annealing–based algorithm, Eli Rosenthal pro-
posed a Zero-Suppressed Binary Decision Diagram (ZDD) based algorithm, and
He et al. proposed a MaxSAT-based extraction algorithm. Yet it is still open to
me which extraction algorithm I should use. There is an extraction gym that
surveys recent extraction algorithms. A surprising finding is that, despite be-
ing much more expensive, these algorithms are not significantly better than the
greedy extraction algorithm that is optimal for the tree cost on the benchmark
tested. It is not clear if this is because the benchmark is too weak, or the greedy
algorithm is just good enough.

One may wonder if they can develop approximation algorithms or fixed-
parameter tractable algorithms for E-graph extraction. Unfortunately, the
inapproximability results of the set cover show that no good polynomial-time
approximation algorithm exists unless P=NP. On the other hand, we have some

1

https://uwplse.org/2024/02/05/Eqsat-theory-ii.html
https://effect.systems/blog/egraph-extraction.html
https://dl.acm.org/doi/10.1145/1480881.1480915
https://dl.acm.org/doi/10.14778/3407790.3407799
https://arxiv.org/abs/2101.01332
https://dl.acm.org/doi/10.1145/3571207
https://github.com/egraphs-good/eggcc
https://pldi23.sigplan.org/details/egraphs-2023-papers/10/KestRel-Relational-Verification-using-E-Graphs-for-Program-Alignment
https://pldi23.sigplan.org/details/egraphs-2023-papers/6/E-graph-Extraction-Using-ZDDs
https://pldi23.sigplan.org/details/egraphs-2023-papers/3/Improving-Term-Extraction-with-Acyclic-Constraints
https://github.com/egraphs-good/extraction-gym


early thoughts on a fixed-parameter tractable algorithm for E-graph extraction.
We do not know how good it is in practice yet.

Scheduling
Another problem I am very excited about is scheduling. The naive equality
saturation algorithm always applies all the rules applicable. The issue with this
approach is that it may spend most of its run time in exploring exponential
rules (e.g., associativity) without making progress, which is highly inefficient.
A slightly better approach is taken by the BackOff scheduler, which bans rules
from firing too often. Yet it is still very heuristic.

Equality saturation can be thought of as a search problem, and the naive schedul-
ing strategy corresponds to the breath-first search (BFS) algorithm. A natural
question then is what other classic search algorithms correspond to in equality
saturation. For example, best-first search uses the current cost of a search node
to guide the search. Can we do something similar in equality saturation by prior-
itizing E-classes or E-nodes that are more “optimal” than others? For example,
if an E-class 𝑐 is part of the optimal term from extraction at iteration 𝑖, prioritiz-
ing firing rules whose root is 𝑐 is an obviously good strategy. On the other hand,
if the path from the root to some E-class is very expensive, then spending lots
of effort making such E-class super-duper-optimized is not a wise move, since it
is unlikely to be included in the extracted program anyway. There seems to be
some low-hanging fruit along this line of reasoning. Sketch-guided equality satu-
ration achieves something similar by extracting intermediate forms and starting
again, an idea RisingLight independently came up with. This approach biases
equality saturation towards more profitable explorations and is similar to beam
search by way of analogy. Other recent approaches include MCTS-GEB, which
uses reinforcement learning for equality saturation scheduling, but it requires
many calls to equality saturation, so it is unclear how useful it is in practice.

As a related note, the scheduling problem is also related to proofs in equality
saturation, since the shortest proof essentially gives the optimal rewrite sequence
to the target term. I think this is very promising, because, unlike the Monte
Carlo Tree Search approach used by MCTS-GEB, constructing a fairly good
proof requires only one call to equality saturation and is relatively efficient.

Another direction I explored in my EGRPAHS 2023 talk is how to design sched-
ulers with guarantees. The naive scheduler indeed provides the guarantee that
if two terms can be shown equivalent by rewriting each term for 𝑛 steps, they
can be shown equivalent within 𝑛 iterations of naive equality saturation. The
talk introduced two more schedulers, merge-only scheduler and depth-bounded
scheduler, both of which always terminate with the following guarantee: if two
terms can be shown equivalent using only terms in the initial E-graph (resp.
terms with a bounded depth), the equivalence can be shown with the given
scheduler. These schedulers are arguably less powerful than the naive sched-
uler, but they can be useful in ensuring both the termination and completeness

2

https://dl.acm.org/doi/10.1145/3632900
https://dl.acm.org/doi/10.1145/3632900
https://rustmagazine.org/issue-2/write-a-sql-optimizer-using-egg/
https://arxiv.org/abs/2303.04651
https://repositum.tuwien.at/handle/20.500.12708/81325
https://effect.systems/doc/egraphs-2023-theory/paper.pdf


properties of systems and, when composed with other scheduling strategies (e.g.,
search-inspired ones mentioned above), can be very efficient.

3


	Extraction
	Scheduling

