The E-graph extraction problem is NP-complete

Yihong Zhang

June 22, 2023

In this quick note, I will show that the E-graph extraction problem is NP-complete.

The E-graph extraction problem is defined as follows:

Input:	An E-graph G and a cost function mapping E-nodes $% \left[{{\left[{{{\left[{{C_{\rm{s}}} \right]}} \right]}_{\rm{cost}}}} \right]_{\rm{cost}}} \right]$
	to positive numbers.
Output:	A DAG t represented by G such that t has the
	lowest cost possible.

First, the extraction problem is in NP^1 because it can be reduced to integer linear programming (ILP). Moreover, we show the extraction problem is NP-hard by reducing the minimum set cover problem to it.

The minimum set cover problem is defined as follows (adapted from Wikipedia):

```
Input: A set of elements {1, 2, ..., n} (called the universe)
and a collection S of m sets whose union equals the
universe.
```

```
Output: The smallest sub-collection of S whose union equals the universe.
```

We show an instance of how this minimum set cover problem can be reduced to E-graph extraction: consider the universe $U = \{1, 2, 3, 4, 5\}$ and the collection of sets $S = \{\{1, 2, 3\}, \{2, 4\}, \{3, 4\}, \{4, 5\}\}$. The smallest subset of S that covers all of the elements is $\{\{1, 2, 3\}, \{4, 5\}\}$.

Our construction is as follows:

- 1. For each $j \in U$, we create a corresponding E-class c_j .
- 2. For each collection S_i , we create an E-class c_{S_i} with a singleton E-node S_i .
- 3. For each $S_i=\{j_1,\ldots,j_{l_m}\},$ we create a new E-node $u_{j_k}(c_{S_i})$ in E-class c_{j_k} for all $j_k.$

¹Here we consider the optimization variant of the NP complexity class. The decision version of the extract problem is, given an E-graph and a cost function, does there exist a DAG represented by the E-graph with a given cost n?

- 4. We create a root E-class with a special E-node whose children include all $C_{j_k}.$
- 5. Every E-node has a uniform cost of $1.^2$

This will produce the following E-graph for our example.

Figure 1: The E-graph from our example and the optimal extraction

The intuition behind this construction is that, to extract the root E-class, we have to cover all the elements in the universe, so we need to pick an E-node from each c_j . To cover all c_j 's with the smallest cost means picking as fewer S_i E-nodes as possible, which corresponds to a minimum set cover.

As a side note, the construction here uses function symbols with non-constant arities (i.e., the root E-node). This can be fixed by replacing the root E-node with O(n) many E-nodes with binary function symbols forming a depth $O(\log n)$ binary tree, so our reduction only requires unary and binary function symbols.

Update (Aug 29, 2023): Michael Stepp showed the NP-completeness of this problem via a similar reduction to Min-SAT in his thesis.

²In fact, the costs of the root E-node and u_{j_k} 's do not matter and can be set as zero, as these E-nodes will be in the extracted DAG anyway. We (arbitrarily) set their cost to be 1 (instead of say 0) to make sure the cost model is strictly monotonic.